
COMP 220 Computer Organization Spring 2025

MIPS Pseudoinstructions

Pseudoinstructions are legal MIPS assembly language instructions that do not translate directly
to binary machine code; that is, they do not have a direct hardware implementation. They are
provided as a convenience for the programmer. The assembler will translate a pseudoinstruction
to an equivalent single, more complex instruction or a short sequence of instructions.

Below is a list of MIPS pseudoinstructions and their functions. Note that such instructions do not
include binary encoding information, since they do not translate to machine code directly.

Pseudoinstruction Meaning Alternative MIPS

abs rdest, rsrc absolute value several instructions
div rdest, rsrc1, rsrc2 divide (with overflow) div rs, rt, etc.
divu rdest, rsrc1, rsrc2 divide (without overflow) divu rs, rt, etc.
mulo rdest, rsrc1, rsrc2 multiply (with overflow) mult rs, rt, etc.
mulou rdest, rsrc1, rsrc2 unsigned multiply (with overflow) multu rs, rt, etc.
neg rdest, rsrc negate value (with overflow) sub rd, $0, rt

negu rdest, rsrc negate value (without overflow) subu rd, $0, rt

not rdest, rsrc logical not nor rd, rs, $0

rem rdest, rsrc1, rscr2 remainder div rs, rt, etc.
remu rdest, rsrc1, rsrc2 unsigned remainder divu rs, rt, etc.
li rdest, imm load immediate addiu rs,$0,imm

seq rdest, rsrc1, rsrc2 set rdest to 1 if rsrc1 = rsrc2 several instructions
sge rdest, rsrc1, rscr2 set rdest to 1 if rsrc1 ≥ rsrc2 several instructions
sgeu rdest, rsrc1, rscr2 set rdest to 1 if rsrc1 ≥ rsrc2 several instructions
sgt rdest, rsrc1, rscr2 set rdest to 1 if rsrc1 > rsrc2 several instructions
sgtu rdest, rsrc1, rscr2 set rdest to 1 if rsrc1 > rsrc2 several instructions
sle rdest, rsrc1, rscr2 set rdest to 1 if rsrc1 ≤ rsrc2 several instructions
sleu rdest, rsrc1, rscr2 set rdest to 1 if rsrc1 ≤ rsrc2 several instructions
sne rdest, rsrc1, rscr2 set rdest to 1 if rsrc1 6= rsrc2 several instructions
b label branch to label bc1t label

beqz rsrc, label branch to label if rsrc = 0 beq rs, $0, label

bge rsrc1, rsrc2, label branch to label if rsrc1 ≥ rsrc2 slt, etc.
bgeu rsrc1, rsrc2, label branch to label if rsrc1 ≥ rsrc2 sltu, etc.
bgt rsrc1, rsrc2, label branch to label if rsrc1 > rsrc2 slt, etc.
bgtu rsrc1, rsrc2, label branch to label if rsrc1 > rsrc2 sltu, etc.
ble rsrc1, rsrc2, label branch to label if rsrc1 ≤ rsrc2 slt, etc.
bleu rsrc1, rsrc2, label branch to label if rsrc1 ≤ rsrc2 sltu, etc.
blt rsrc1, rsrc2, label branch to label if rsrc1 < rsrc2 slt, etc.
bltu rsrc1, rsrc2, label branch to label if rsrc1 < rsrc2 sltu, etc.
bnez rsrc, label branch to label if rsrc 6= 0 bnez rs, $0, label

la rdest, address load address into rdest lui, etc.
ld rdest, address load 64-bit address into register pair several instructions
ulh rdest, address load 16-bit address into rdest∗ big mess
ulhu rdest, address load 16-bit address into rdest∗ big mess
sd rsrc, address store 64-bit quantity at address big mess
sdu rsrc, address store 64-bit quantity at address big mess
usw rsrc, address store 16-bit quantity at address∗ still a big mess
move rdest, rsrc copy value in rsrc to rdest addu rd, $0, rs

mfc1.d rdest, frsrc1 mv fl. pt. register pair to rdest mfc1 rd, fs, etc.

∗Possibly unaligned.

