Chapter 5

Large and Fast: Exploiting Memory
Hierarchy

Copyright © 2014 Elsevier Inc. All rights reserved.

Speed Processor

Fastest Memory
Memory

Slowest Memory

Size

Smallest

Biggest

Current

Cost ($/bit) technology
Highest SRAM
DRAM
Lowest Magnetic disk

FIGURE 5.1 The basic structure of a memory hierarchy. By implementing the memory system as a hierarchy,
the user has the illusion of a memory that is as large as the largest level of the hierarchy, but can be accessed as
if it were all built from the fastest memory. Flash memory has replaced disks in many personal mobile devices,
and may lead to a new level in the storage hierarchy for desktop and server computers; see Section 5.2.

Copyright © 2014 Elsevier Inc. All rights reserved.

Processor

Data is transferred

N

FIGURE 5.2 Every pair of levels in the memory hierarchy can be thought of as having an upper and lower level.
Within each level, the unit of information that is present or not is called a block or a line. Usually we transfer an
entire block when we copy something between levels.

Copyright © 2014 Elsevier Inc. All rights reserved.

CPU

Increasing distance
Level 1 from the CPU in
access time
Levels in the Level 2
memory hierarchy
Level n
Y

Y

A

Size of the memory at each level

FIGURE 5.3 This diagram shows the structure of a memory hierarchy: as the distance from the processor
increases, so does the size. This structure, with the appropriate operating mechanisms, allows the processor to
have an access time that is determined primarily by level 1 of the hierarchy and yet have a memory as large as
level n. Maintaining this illusion is the subject of this chapter. Although the local disk is normally the bottom of the
hierarchy, some systems use tape or a file server over a local area network as the next levels of the hierarchy.

Copyright © 2014 Elsevier Inc. All rights reserved.

Bank I
Column I
l

Rd/Wr

Act

|| Pre —

Row

FIGURE 5.4 Internal organization of a DRAM. Modern DRAMs are organized in banks, typically four for DDRS3.
Each bank consists of a series of rows. Sending a PRE (precharge) command opens or closes a bank. A row
address is sent with an Act (activate), which causes the row to transfer to a buffer. When the row is in the buffer,
it can be transferred by successive column addresses at whatever the width of the DRAM is (typically 4, 8, or 16
bits in DDR3) or by specifying a block transfer and the starting address. Each command, as well as block

transfers, is synchronized with a clock.

Copyright © 2014 Elsevier Inc. All rights reserved.

Average column
access time to

Total access time to

Year introduced S per GiB a hew row/column existing row
1980 64 Kibibit $1,500,000 250 ns 150 ns
1983 256 Kibibit $500,000 185 ns 100 ns
1985 1 Mebibit $200,000 135 ns 40 ns
1989 4 Mebibit $50,000 110 ns 40 ns
1992 16 Mebibit $15,000 90 ns 30 ns
1996 64 Mebibit $10,000 60 ns 12 ns
1998 128 Mebibit $4,000 60 ns 10 ns
2000 256 Mebibit $1,000 55 ns 7 ns
2004 512 Mebibit $250 50 ns 5ns
2007 1 Gibibit $50 45 ns 1.25ns
2010 2 Gibibit $30 40 ns 1ns
2012 4 Gibibit $1 35ns 0.8 ns

FIGURE 5.5 DRAM size increased by multiples of four approximately once every three years until 1996, and
thereafter considerably slower. The improvements in access time have been slower but continuous, and cost
roughly tracks density improvements, although cost is often affected by other issues, such as availability and
demand. The cost per gibibyte is not adjusted for inflation.

Copyright © 2014 Elsevier Inc. All rights reserved.

@ . @

FIGURE 5.6 A disk showing 10 disk platters and the read/write heads. The diameter of today’s disks is 2.5 or
3.5 inches, and there are typically one or two platters per drive today.

Copyright © 2014 Elsevier Inc. All rights reserved.

X, X4
X X
Xn-1 Xn-1
X X
%
. "

a. Before the reference to X,, b. After the reference to X,

FIGURE 5.7 The cache just before and just after a reference to a word X, that is not initially in the cache. This
reference causes a miss that forces the cache to fetch X, from memory and insert it into the cache.

Copyright © 2014 Elsevier Inc. All rights reserved.

Cache

000
001
010
011
100
101
110
111

00001 00101 01001 01101 10001 10101 11001 11101
Memory

FIGURE 5.8 A direct-mapped cache with eight entries showing the addresses of memory words between 0 and
31 that map to the same cache locations. Because there are eight words in the cache, an address X maps to the
direct-mapped cache word X modulo 8. That is, the low-order log2(8) 5 3 bits are used as the cache index. Thus,
addresses 00001two, 01001two, 10001wo, and 11001wo all map to entry 001wo of the cache, while addresses
00101two, 01101two, 10101two, and 11101wwo all map to entry 101wo of the cache.

Copyright © 2014 Elsevier Inc. All rights reserved.

= T
000

001

010

011

100

101

110

Z|lZ2|Z2|z2|2|=2|l2|=2

111

a. The initial state of the cache after power-on

findex | v | tag | owa |
000

001
010
011
100
101
110
111

110 Memory (11010,,,)

1040 Memory (10110,,,)

Z|<|Z|Zz|Z2|<|=2|=2

c. After handling a miss of address (11010,,,)

mnm“
000 100 Memory (10000,,,)
001 N
010 Y 115 Memory (11010,,,)
011 Y 0040 Memory {00011,,,,)
100 N
101 N
110 Y 100 Memory (10110,,,)
111 N

e. After handling a miss of address (00011,,,)

fntor | v | Tog | own |
000

001

010

011

100

101

110 1040 Memory (10110,,,,)

Z|<|Z|lZz|zZz|Z2|2|2

111

=3

. After handling a miss of address (101104,,)

mnm—

Memory (10000,,,,)

001 N

010 Y 11,0 Memory (11010,

011 N

100 N

101 N

110 Y 10,0 Memory (10110,,,,)

111 N

d. After handling a miss of address (10000,,,)

mnm“
000 1040 Memory (10000,,,)
001 N
010 Y 10,0 Memory (10010,,,)
011 Y 0040 Memory (00011,,,)
100 N
101 N
110 Y 1040 Memory (10110,,,,)
111 N

f. After handling a miss of address (10010,,,,)

FIGURE 5.9 The cache contents are shown after each reference request that misses, with the index and tag
fields shown in binary for the sequence of addresses on page 386. The cache is initially empty, with all valid bits
(V entry in cache) turned off (N). The processor requests the following addresses: 10110two (miss), 11010two
(miss), 10110wo (hit), 11010two (hit), 20000two (miss), 00011lwo (miss), 10000wo (hit), 20010wo (mMiss), and
10000wo (hit). The figures show the cache contents after each miss in the sequence has been handled. When
address 10010wo (18) is referenced, the entry for address 11010wo (26) must be replaced, and a reference to
11010wo will cause a subsequent miss. The tag field will contain only the upper portion of the address. The full
address of a word contained in cache block i with tag field j for this cache is j 3 8 1 i, or equivalently the
concatenation of the tag field j and the index i. For example, in cache f above, index 010wo has tag 10wo and
corresponds to address 10010two.

Copyright © 2014 Elsevier Inc. All rights reserved.

10

Address (showing bit positions)

313 --- 131211---2 10
Byte
offset
Hit 420 10
Tag
Index Data
Index Valid Tag Data
0
1
2
[]
1021
1022
1023
420 d 32
(=

FIGURE 5.10 For this cache, the lower portion of the address is used to select a cache entry consisting of a
data word and a tag. This cache holds 1024 words or 4 KiB. We assume 32-bit addresses in this chapter. The
tag from the cache is compared against the upper portion of the address to determine whether the entry in the
cache corresponds to the requested address. Because the cache has 210 (or 1024) words and a block size of
one word, 10 bits are used to index the cache, leaving 32 —-10 — 2 = 20 bits to be compared against the tag. If the
tag and upper 20 bits of the address are equal and the valid bit is on, then the request hits in the cache, and the
word is supplied to the processor. Otherwise, a miss occurs.

Copyright © 2014 Elsevier Inc. All rights reserved.

11

10%

[

Miss 5%
rate

--

0%

16 32 64 128 256
Block size

FIGURE 5.11 Miss rate versus block size. Note that the miss rate actually goes up if the block size is too large
relative to the cache size. Each line represents a cache of different size. (This figure is independent of
associativity, discussed soon.) Unfortunately, SPEC CPU2000 traces would take too long if block size were

included, so this da

ta is based on SPEC92.
Copyright © 2014 Elsevier Inc. All rights reserved.

12

Address (showing bit positions)

31 - 1413:--65:--210
, J18 8 J4 By Data
Hit Tag A offset
Index Block offset
18 bits 512 bits
V Tag Data
256
4 p b4 entries
J18 432 4.32 J4.32
o
Mux
_
432

FIGURE 5.12 The 16 KiB caches in the Intrinsity FastMATH each contain 256 blocks with 16 words per block.

The tag field is 18 bits wide and the index field is 8 bits wide, while a 4-bit field (bits 5-2) is used to index the
block and select the word from the block using a 16-to-1 multiplexor. In practice, to eliminate the multiplexor,
caches use a separate large RAM for the data and a smaller RAM for the tags, with the block offset supplying
the extra address bits for the large data RAM. In this case, the large RAM is 32 bits wide and must have 16

times as many words as blocks in the cache.

Copyright © 2014 Elsevier Inc. All rights reserved.

13

Instruction miss rate Effective combined miss rate

| 0.4% 11.4% 3.2% |

FIGURE 5.13 Approximate instruction and data miss rates for the Intrinsity FastMATH processor for SPEC
CPU2000 benchmarks. The combined miss rate is the effective miss rate seen for the combination of the 16 KiB
instruction cache and 16 KiB data cache. It is obtained by weighting the instruction and data individual miss rates
by the frequency of instruction and data references.

Copyright © 2014 Elsevier Inc. All rights reserved. 14

Direct mapped Set associative Fully associative

Block# 01234567 Set# 0 1 2 3

Data Data

FIGURE 5.14 The location of a memory block whose address is 12 in a cache with eight blocks varies for
direct-mapped, set-associative, and fully associative placement. In direct-mapped placement, there is only one
cache block where memory block 12 can be found, and that block is given by (12 modulo 8) 5 4. In a two-way
set-associative cache, there would be four sets, and memory block 12 must be in set (12 mod 4) 5 0; the
memory block could be in either element of the set. In a fully associative placement, the memory block for block
address 12 can appear in any of the eight cache blocks.

Copyright © 2014 Elsevier Inc. All rights reserved. 15

One-way set associative
(direct mapped)

FIGURE 5.15 An eight-block cache configured as direct mapped, two-way set associative, four-way set
associative, and fully associative. The total size of the cache in blocks is equal to the number of sets times the
associativity. Thus, for a fixed cache size, increasing the associativity decreases the number of sets while
increasing the number of elements per set. With eight blocks, an eight-way set-associative cache is the same as

a fully associative cache. Copyright © 2014 Elsevier Inc. All rights reserved. 16

Associativity Data miss rate

1 10.3%
2 8.6%
4 8.3%
8 8.1%

FIGURE 5.16 The data cache miss rates for an organization like the Intrinsity FastMATH processor for SPEC
CPU2000 benchmarks with associativity varying from one-way to eight-way. These results for 10 SPEC
CPU2000 programs are from Hennessy and Patterson (2003).

Copyright © 2014 Elsevier Inc. All rights reserved.

Tag Index Block offset

FIGURE 5.17 The three portions of an address in a set-associative or direct-mapped cache. The index is used
to select the set, then the tag is used to choose the block by comparison with the blocks in the selected set. The
block offset is the address of the desired data within the block.

Copyright © 2014 Elsevier Inc. All rights reserved.

Address
3130---12111098:--3210

| [|

422 48
Tag
Index
Index V Tag Data V Tag Data V Tag Data V Tag Data
0
1
2
L L] 9 L] L] L L] 4
253
254
255
J22 {32
G= [T

Hit Data

FIGURE 5.18 The implementation of a four-way set-associative cache requires four comparators and a 4-to-1
multiplexor. The comparators determine which element of the selected set (if any) matches the tag. The output of
the comparators is used to select the data from one of the four blocks of the indexed set, using a multiplexor with
a decoded select signal. In some implementations, the Output enable signals on the data portions of the cache
RAMSs can be used to select the entry in the set that drives the output. The Output enable signal comes from the
comparators, causing the element that matches to drive the data outputs. This organization eliminates the need
for the multiplexor.

Copyright © 2014 Elsevier Inc. All rights reserved.

19

1200

1000 -

Instructions/item

200

2000

1600 -

Clock cycles/item

c.

FIGURE 5.19 Comparing Quicksort and Radix Sort by (a) instructions executed per item sorted, (b) time per
item sorted, and (c) cache misses per item sorted. This data is from a paper by LaMarca and Ladner [1996]. Due
to such results, new versions of Radix Sort have been invented that take memory hierarchy into account, to
regain its algorithmic advantages (see Section 5.15). The basic idea of cache optimizations is to use all the data

in a block repeatedly before it is rep@

800 -

600

400

1200 -

Cache misses/item

Radix Sort

Quicksort

——a

4 8 16 32 64 128 256 512 1024 2048 4096
Size (K items to sort)

Radix Sort

M

4 8 16 32 64 128 256 512 1024 2048 4096
Size (K items to sort)

Radix Sort

Quicksort /

ced

4 8 16 32 64 128 256 512 1024 2048 4096
Size (K items to sort)

opyng%péigﬂ%lsevier Inc. All rights reserved.

20

(62 BN - ©* B o

FIGURE 5.20 A snapshot of the three arrays C, A, and Bwhen N5 6 and i 5 1. The age of accesses to the array
elements is indicated by shade: white means not yet touched, light means older accesses, and dark means
newer accesses. Compared to Figure 5.21, elements of A and B are read repeatedly to calculate new elements
of x. The variables i, j, and k are shown along the rows or columns used to access the arrays.

Copyright © 2014 Elsevier Inc. All rights reserved. 21

1 jdefine BLOCKSIZE 32

2 void do_block (int n, int si, int sj, int sk, double *A, double
3 *B, double *C)

4 |

5 for (int i = si; i < si+BLOCKSIZE; ++i)

6 for (int j = sj; J < sj+BLOCKSIZE; ++]j)

7 {

8 double cij = C[i+j*n]);/* cij = C[i][j] */

9 for(int k = sk; k < sk+BLOCKSIZE; k++)

10 cij += A[i+k*n] * B[k+j*nl;/* cij+=A[i][kI*BLkI[j] */
11 CLi+j*n] = cij:/* CLIi1Lj]) = cij */

172 J

13

14 void dgemm (int n, double* A, double* B, double* C)

15 |

16 for (int sj = 0; sj < n; sj += BLOCKSIZE)

17 for (int si = 0; si < n; si += BLOCKSIZE)

18 for (int sk = 0; sk < n; sk += BLOCKSIZE)

19 do_block{n; S §j. 8K Az By G

20)

FIGURE 5.21 Cache blocked version of DGEMM in Figure 3.21. Assume C is initialized to zero. The do_block
function is basically DGEMM from Chapter 3 with new parameters to specify the starting positions of the
submatrices of BLOCKSIZE. The gcc optimizer can remove the function overhead instructions by inlining the
do_block function.

Copyright © 2014 Elsevier Inc. All rights reserved.

22

(62 B L A\

FIGURE 5.22 The age of accesses to the arrays C, A, and B when BLOCKSIZE 5 3. Note that, in contrast to
Figure 5.20, fewer elements are accessed.

Copyright © 2014 Elsevier Inc. All rights reserved. 23

B 32x32 @ 160x160 @ 480x480 O 960x960

GFLOPS

Unoptimized Blocked

FIGURE 5.23 Performance of unoptimized DGEMM (Figure 3.21) versus cache blocked DGEMM (Figure 5.21)
as the matrix dimension varies from 32x32 (where all three matrices fit in the cache) to 960x960.

Copyright © 2014 Elsevier Inc. All rights reserved.

24

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

Encoded data bits
pl | X X X X X X
Parity p2 X | X X | X X | X
covzlr;ge p4 X | X [X | X X
P8 X | X [X | X |X

FIGURE 5.24 Parity bits, data bits, and field coverage in a Hamming ECC code for eight data bits.

Copyright © 2014 Elsevier Inc. All rights reserved.

Virtual addresses Physical addresses
Address translation

LI

Disk addresses

FIGURE 5.25 In virtual memory, blocks of memory (called pages) are mapped from one set of addresses
(called virtual addresses) to another set (called physical addresses). The processor generates virtual addresses
while the memory is accessed using physical addresses. Both the virtual memory and the physical memory are
broken into pages, so that a virtual page is mapped to a physical page. Of course, it is also possible for a virtual
page to be absent from main memory and not be mapped to a physical address; in that case, the page resides
on disk. Physical pages can be shared by having two virtual addresses point to the same physical address. This
capability is used to allow two different programs to share data or code.

Copyright © 2014 Elsevier Inc. All rights reserved.

26

Virtual address

31 8099/ 28 07 isusuinssis v 15 14 13.12 11 10 9.8 sssvveinans 3210

Virtual page number Page offset

Y

(Translation)

o o W2) s 1oy S SR CCCTCRPTREY 1514131211109 8 «+-cfeeeees 3210

Physical page number Page offset

Physical address

FIGURE 5.26 Mapping from a virtual to a physical address. The page size is2'? 5 4 KiB. The number of
physical pages allowed in memory is 218, since the physical page number has 18 bits in it. Thus, main memory
can have at most 1 GiB, while the virtual address space is 4 GiB.

Copyright © 2014 Elsevier Inc. All rights reserved. 27

Page table register

Virtual address

3130292827 1514 13 12 11 10 9 8 «vvvvve 3210

Virtual page number Page offset

420 12
Valid Physical page number
L] L
Page table
418
If 0 then page is not
present in memory
29 28 27 revrrvrertrcciinssrissrresens .15 14 13 12 11 10 9 8-+ 3210
Physical page number Page offset

Physical address

FIGURE 5.27 The page table is indexed with the virtual page number to obtain the corresponding portion of the
physical address. We assume a 32-bit address. The page table pointer gives the starting address of the page
table. In this figure, the page size is 212 bytes, or 4 KiB. The virtual address space is 232 bytes, or 4 GiB, and the
physical address space is 230 bytes, which allows main memory of up to 1 GiB. The number of entries in the
page table is 229, or 1 million entries. The valid bit for each entry indicates whether the mapping is legal. If it is
off, then the page is not present in memory. Although the page table entry shown here need only be 19 bits wide,
it would typically be rounded up to 32 bits for ease of indexing. The extra bits would be used to store additional
information that needs to be kept on a per-page basis, such as protection.

Copyright © 2014 Elsevier Inc. All rights reserved.

Virtual page
number
| | Page table
Physical page or Physical memory
Valid disk address

i

}/’

G
o

:

Disk storage

~ 1

Q\
K
/

’()

=IO =IO || O || =
\

K
/

FIGURE 5.28 The page table maps each page in virtual memory to either a page in main memory or a page
stored on disk, which is the next level in the hierarchy. The virtual page number is used to index the page table. If
the valid bit is on, the page table supplies the physical page number (i.e., the starting address of the page in
memory) corresponding to the virtual page. If the valid bit is off, the page currently resides only on disk, at a
specified disk address. In many systems, the table of physical page addresses and disk page addresses, while
logically one table, is stored in two separate data structures. Dual tables are justified in part because we must
keep the disk addresses of all the pages, even if they are currently in main memory. Remember that the pages in
main memory and the pages on disk are the same size.

Copyright © 2014 Elsevier Inc. All rights reserved. 29

TLB

Virtual page Physical page
number Valid Dirty Ref Tag address
I |
1101 e
11111 . O Physical memo
T3 —— Y 4
——(1[0][1 —
0[0[0 i
1(0/1 o ke S
e
Page table -
Physical page
Valid Dirty Ref or disk address
]
1]10/1 Caas®
1/0/0 W] .
110[0 — /m
1(0(1 L /
0|00 — T
1[0 1 - 717 | I
1]0/1 o -
0[0][0 e I |
1111 ¢« ~ / M |
AENE v / S —
0/0]0 sZ
NEAE ¢

FIGURE 5.29 The TLB acts as a cache of the page table for the entries that map to physical pages only. The
TLB contains a subset of the virtual-to-physical page mappings that are in the page table. The TLB mappings are
shown in color. Because the TLB is a cache, it must have a tag field. If there is no matching entry in the TLB for
a page, the page table must be examined. The page table either supplies a physical page number for the page
(which can then be used to build a TLB entry) or indicates that the page resides on disk, in which case a page
fault occurs. Since the page table has an entry for every virtual page, no tag field is needed; in other words,
unlike a TLB, a page table is not a cache.

Copyright © 2014 Elsevier Inc. All rights reserved.

30

Virtual address
31830 29 veernerrninainaieaiins 14 13 12 11 10 9-+oovon 3210
Virtual page number Page offset |

20 412

Valid Dirty Tag Physical page number

TLB
TLB hit =

(LT

20

S

l l

Physical page number] Page offset

Block Byte
offset offset

4+2

hysical
Physical address tag I Cache index

+1a ,|33

12 Data

Valid Tag

Cache

(&
Cache hit

432

Data

FIGURE 5.30 The TLB and cache implement the process of going from a virtual address to a data item in the
Intrinsity FastMATH. This figure shows the organization of the TLB and the data cache, assuming a 4 KiB page
size. This diagram focuses on a read; Figure 5.31 describes how to handle writes. Note that unlike Figure 5.12,
the tag and data RAMs are split. By addressing the long but narrow data RAM with the cache index
concatenated with the block offset, we select the desired word in the block without a 16:1 multiplexor. While the
cache is direct mapped, the TLB is fully associative. Implementing a fully associative TLB requires that every
TLB tag be compared against the virtual page number, since the entry of interest can be anywhere in the TLB.
(See content addressable memories in the Elaboration on

page 408.) If the valid bit of the matching entry is on, the access is a TLB hit, and bits from the physical page
number together with bits from the page offset form the index that is used to access the cache.

Copyright © 2014 Elsevier Inc. All rights reserved.

31

Virtual address

TLB access

excipion TLBhit?
P Physical address

Try to read data

from cache

Write access
bit on?
ity prot!ecnon Try to write data

Cache miss stall No Yes cxaeption to cache
while read block

Deliver data

to the CPU
Cache miss stall | No Yes
while read block

Write data into cache,
update the dirty bit, and
put the data and the
address into the write buffer

FIGURE 5.31 Processing a read or a write-through in the Intrinsity FastMATH TLB and cache. If the TLB
generates a hit, the cache can be accessed with the resulting physical address. For a read, the cache generates
a hit or miss and supplies the data or causes a stall while the data is brought from memory. If the operation is a
write, a portion of the cache entry is overwritten for a hit and the data is sent to the write buffer if we assume
write-through. A write miss is just like a read miss except that the block is modified after it is read from memory.
Write-back requires writes to set a dirty bit for the cache block, and a write buffer is loaded with the whole block
only on a read miss or write miss if the block to be replaced is dirty. Notice that a TLB hit and a cache hit are
independent events, but a cache hit can only occur after a TLB hit occurs, which means that the data must be
present in memory. The relationship between TLB misses and cache misses is examined further in the following
example and the exercises at the end of this chapter.

Copyright © 2014 Elsevier Inc. All rights reserved.

32

Page
table Possible? If so, under what circumstance?

Miss | Possible, although the page table is never really checked if TLB hits.

Miss | Hit Hit | TLB misses, but entry found in page table; after retry, data is found in cache.

Miss Hit Miss | TLB misses, but entry found in page table; after retry, data misses in cache.

Miss | Miss Miss | TLB misses and is followed by a page fault; after retry, data must miss in cache.
Hit | Miss Miss | Impossible: cannot have a translation in TLB if page is not present in memory.
Hit | Miss Hit Impossible: cannot have a translation in TLB if page is not present in memory.

Miss | Miss Hit Impossible: data cannot be allowed in cache if the page is not in memory.

FIGURE 5.32 The possible combinations of events in the TLB, virtual memory system, and cache. Three of
these combinations are impossible, and one is possible (TLB hit, virtual memory hit, cache miss) but never
detected.

Copyright © 2014 Elsevier Inc. All rights reserved.

CPO register number Description

EPC 14 Where to restart after exception
Cause 13 Cause of exception
BadVAddr 8 Address that caused exception
Index 0 Location in TLB to be read or written
Random 1 Pseudorandom location in TLB
EntryLo 2 Physical page address and flags
EntryHi 10 Virtual page address
Context 4 Page table address and page number

FIGURE 5.33 MIPS control registers. These are considered to be in coprocessor 0, and hence are read using
mfcO and written using mtcO.

Copyright © 2014 Elsevier Inc. All rights reserved.

Save state

Save GPR addi $k1,$sp, -XCPSIZE # save space on stack for state
sw $sp, XCT_SP($kl) # save $sp on stack
sW $v0, XCT_VO($kl) # save $v0 on stack
T #f save $vl, $ai, $si, $ti,...on stack
SW $ra, XCT _RA($k1) # save $ra on stack
Save hi, lo mfhi $v0 {f copy Hi
mflo $vl # copy Lo
SW $v0, XCT_HI($k1l) 4 save Hi value on stack
sw $vl, XCT_LO(S$k1) # save Lo value on stack
Save exception mfcO $a0, scr #f copy cause register
registers sw $a0, XCT_CR($k1l) 4 save $cr value on stack
F save $vl,....
mfcl $a3, $sr it copy status register
sSW $a3, XCT_SR($kl) # save $sr on stack
Set sp move $sp, $kl # sp = sp - XCPSIZE

Enable nested exceptions

andi $v0, $a3, MASKI1
mtcO $v0, $sr

#f $v0 = $sr & MASK1, enable exceptions
sr = value that enables exceptions

==
-

Call C exception handler

Set $gp

move $agp, GPINIT

#f set $gp to point to heap area

Call C code

move $a0, $sp
jal xcpt_deliver

argl = pointer to exception stack
f# call C code to handle exception

Restoring state

Restore most move $at, SS? # temporary value of $sp
GPR, hi, 1o Tw $ra, XCT_RA($at) {f restore $ra from stack
restore $t0,...., $al
Tw $a0, XCT_AO($k1l) i restore $a0 from stack
Restore status Tw $v0, XCT_SR($at) 4 load old $sr from stack
register 1i $v1, MASK2 # mask to disable exceptions
and $v0, $v0, $vl # $v0 = $sr & MASK2, disable exceptions

mtc $v0, $sr

set status register

Exception return

Restore $sp Tw $sp, XCT_SP(sat) # restore $sp from stack
ggg :zgg gg Tw $v0, XCT_VO($at) # restore $v0 from stack
temporary Tw $v1, XCT_V1(sat) #f restore $v1 from stack
registers Tw $k1, XCT_EPC($at) # copy old $epc from stack
Tw $at, XCT_AT($at) # restore $at from stack
Restore ERC mtco $k1, $epc # restore $epc
and return eret $ra {#f return to interrupted instruction

FIGURE 5.34 MIPS code to save and restore state on an exception.

Copyright © 2014 Elsevier Inc. All rights reserved.

35

Typical values
Feature for L1 caches

Typical values

Typical values for Typical values
paged memory fora TLB

for L2 caches
Total size in blocks 250-2000 2500-25,000 16,000-250,000 40-1024
Total size in kilobytes 16-64 125-2000 1,000,000-1,000,000,000 0.25-16
Block size in bytes 16-64 64-128 4000-64,000 4-32
Miss penalty in clocks 10-25 100-1000 10,000,000-100,000,000 10-1000
Miss rates (global for L2) 2%-5% 0.1%2% 0.00001%—0.0001% 0.01%—-2%

FIGURE 5.35 The key quantitative design parameters that characterize the major elements of memory
hierarchy in a computer. These are typical values for these levels as of 2012. Although the range of values is
wide, this is partially because many of the values that have shifted over time are related; for example, as caches
become larger to overcome larger miss penalties, block sizes also grow. While not shown, server
microprocessors today also have L3 caches, which can be 2 to 8 MiB and contain many more blocks than L2
caches. L3 caches lower the L2 miss penalty to 30 to 40 clock cycles.

Copyright © 2014 Elsevier Inc. All rights reserved. 36

L3

125 F====imaan
©
0
R
= 6% T
e e
32 KiB : .
- . 64 KiB % 128 KiB M
O I I I 1
One-way Two-way Four-way Eight-way

Associativity

FIGURE 5.36 The data cache miss rates for each of eight cache sizes improve as the associativity increases.
While the benefit of going from one-way (direct mapped) to two-way set associative is significant, the benefits of
further associativity are smaller (e.g., 1%—-10% improvement going from two-way to four-way versus 20%—-30%
improvement going from one-way to two-way). There is even less improvement in going from four-way to eight-
way set associative, which, in turn, comes very close to the miss rates of a fully associative cache. Smaller
caches obtain a significantly larger absolute benefit from associativity because the base miss rate of a small
cache is larger. Figure 5.16 explains how this data was collected.

Copyright © 2014 Elsevier Inc. All rights reserved.

37

10%
9%
8%

O,

T Two-way

6% -

Miss rate
per type

5% A Four-way

4% -
3% A
2% A

Capacity
1% -

0%

-

I [T T

4 8 16 32 64 128 256 512 1024
Cache size (KiB)

FIGURE 5.37 The miss rate can be broken into three sources of misses. This graph shows the total miss rate
and its components for a range of cache sizes. This data is for the SPEC CPU2000 integer and floating-point
benchmarks and is from the same source as the data in Figure 5.36 The compulsory miss component is 0.006%
and cannot be seen in this graph. The next component is the capacity miss rate, which depends on cache size.
The conflict portion, which depends both on associativity and on cache size, is shown for a range of
associativities from one-way to eight-way. In each case, the labeled section corresponds to the increase in the
miss rate that occurs when the associativity is changed from the next higher degree to the labeled degree of
associativity. For example, the section labeled two-way indicates the additional misses arising when the cache
has associativity of two rather than four. Thus, the difference in the miss rate incurred by a direct-mapped cache
versus a fully associative cache of the same size is given by the sum of the sections marked four-way, two-way,
and one-way. The difference between eight-way and four-way is so small that it is difficult to see on this graph.

Copyright © 2014 Elsevier Inc. All rights reserved. 38

Possible negative
Design change Effect on miss rate performance effect

Increases cache size | Decreases capacity misses May increase access time
Increases associativity | Decreases miss rate due to conflict May increase access time
misses

Increases block size Decreases miss rate for a wide range of | Increases miss penalty. Very large
block sizes due to spatial locality block could increase miss rate

FIGURE 5.38 Memory hierarchy design challenges.

Copyright © 2014 Elsevier Inc. All rights reserved.

Combinational

control logic Datapath control outputs

Outputs <

Inputs

R ~
r N\

THITT

State register

Inputs from cache
datapath t

FIGURE 5.39 Finite-state machine controllers are typically implemented using a block of combinational logic
and a register to hold the current state. The outputs of the combinational logic are the next-state number and the
control signals to be asserted for the current state. The inputs to the combinational logic are the current state
and any inputs used to determine the next state. Notice that in the finite-state machine used in this chapter, the
outputs depend only on the current state, not on the inputs. The Elaboration explains this in more detail.

Copyright © 2014 Elsevier Inc. All rights reserved.

40

Cache Hit
Mark Cache Ready (

A

Compare Tag

If Valid && Hit ,
Set Valid, SetTag,
if Write Set Dirty

Idle

-

Valid CPU request

Cache Cache
Miss Miss

and and

Old Block Old Block

is Clean is Dirty

Write-Back

Write Old
Block to
Memory

Allocate Memory Ready

Read new block
from Memory

FIGURE 5.40 Four states of the simple controller.

Copyright © 2014 Elsevier Inc. All rights reserved.

Memory

Cache contents for | Cache contents contents for

CPUA forCPUB location X
0 0
1 CPU A reads X 0
2 CPU B reads X 0
3 CPU A stores 1 into X 1

FIGURE 5.41 The cache coherence problem for a single memory location (X), read and written by two
processors (A and B). We initially assume that neither cache contains the variable and that X has the value 0.
We also assume a write-through cache; a write-back cache adds some additional but similar complications. After
the value of X has been written by A, A's cache and the memory both contain the new value, but B’s cache does
not, and if B reads the value of X, it will receive 0!

Copyright © 2014 Elsevier Inc. All rights reserved. 42

Contents of

Contents of Contents of memory
Processor activity CPU A’s cache | CPU B’s cache | location X
0
CPU A reads X Cache miss for X 0 0
CPU B reads X Cache miss for X 0 0 0
CPUAwritesal1toX Invalidation for X 1 0
CPU B reads X Cache miss for X 1 g 1

FIGURE 5.42 An example of an invalidation protocol working on a snooping bus for a single cache block (X)
with write-back caches. We assume that neither cache initially holds X and that the value of X in memory is 0.
The CPU and memory contents show the value after the processor and bus activity have both completed. A
blank indicates no activity or no copy cached. When the second miss by B occurs, CPU A responds with the
value canceling the response from memory. In addition, both the contents of B’s cache and the memory contents
of X are updated. This update of memory, which occurs when a block becomes shared, simplifies the protocol,
but it is possible to track the ownership and force the write-back only if the block is replaced. This requires the
introduction of an additional state called “owner,” which indicates that a block may be shared, but the owning
processor is responsible for updating any other processors and memory when it changes the block or replaces it.

Copyright © 2014 Elsevier Inc. All rights reserved.

43

Characteristic ARM Cortex-A8 Intel Core i7

Virtual address | 32 bits 48 bits

Physical address | 32 bits 44 bits

Page size Variable: 4, 16, 64 KiB, 1, 16 MiB Variable: 4 KiB, 2/4 MiB

TLB organization | 1 TLB for instructions and 1 TLB 1 TLB for instructions and 1 TLB for
for data data per core
Both TLBs are fully associative, Both L1 TLBs are four-way set
with 32 entries, round robin associative, LRU replacement

replacement
L1 I-TLB has 128 entries for small
TLB misses handled in hardware pages, 7 per thread for large pages

L1 D-TLB has 64 entries for small
pages, 32 for large pages

The L2 TLB is four-way set associative,
LRU replacement

The L2 TLB has 512 entries

TLB misses handled in hardware

FIGURE 5.43 Address translation and TLB hardware for the ARM Cortex-A8 and Intel Core i7 920. Both
processors provide support for large pages, which are used for things like the operating system or mapping a
frame buffer. The large-page scheme avoids using a large number of entries to map a single object that is
always present.

Copyright © 2014 Elsevier Inc. All rights reserved.

Characteristic ARM Cortex-A8 Intel Nehalem

L1 cache organization | Split instruction and data caches Split instruction and data caches

L1 cache size 32 KiB each for instructions/data 32 KiB each for instructions/data
per core

L1 cache associativity | 4-way (l), 4-way (D) set associative 4-way (1), 8-way (D) set associative

L1 replacement Random Approximated LRU

L1 block size 64 bytes 64 bytes

L1 write policy Write-back, Write-allocate(?) Write-back, No-write-allocate

L1 hit time (load-use) | 1 clock cycle 4 clock cycles, pipelined

L2 cache organization | Unified (instruction and data) Unified (instruction and data) per core

L2 cache size 128 KiB to 1 MiB 256 KiB (0.25 MiB)

L2 cache associativity | 8-way set associative 8-way set associative

L2 replacement Random(?) Approximated LRU

L2 block size 64 bytes 64 bytes

L2 write policy Write-back, Write-allocate (?) Write-back, Write-allocate

L2 hit time 11 clock cycles 10 clock cycles

L3 cache organization - Unified (instruction and data)

L3 cache size - 8 MiB, shared

L3 cache associativity - 16-way set associative

L3 replacement - Approximated LRU

L3 block size - 64 bytes

L3 write policy - Write-back, Write-allocate

L3 hit time - 35 clock cycles

FIGURE 5.44 Caches in the ARM Cortex-A8 and Intel Core i7 920.

Copyright © 2014 Elsevier Inc. All rights reserved.

25.0% == === =mmmmmm s memmemseoeoooeoooooo

20.0%
15.0% -
(]
©
(h'd
7
= 10.0% - —&— L1 Data Miss Rate
L2 Data Miss Rate
5.0%
0.0%

FIGURE 5.45 Data cache miss rates for ARM Cortex-A8 when running Minnespec, a small version of
SPEC2000. Applications with larger memory footprints tend to have higher miss rates in both L1 and L2. Note
that the L2 rate is the global miss rate; that is, counting all references, including those that hit in L1. (See
Elaboration in Section 5.4.) Mcf is known as a cache buster. Note that this figure is for the same systems and
benchmarks as Figure 4.76 in Chapter 4.

Copyright © 2014 Elsevier Inc. All rights reserved.

46

4.5 M L2 data average memory penalty
[L1 data average memory penalty

&
(&)

w

N

Miss penalty per data reference
N
(62}

-k
(6)]

0.5+

41 H-H-N NN .
gcc

gzip vpr mcf crafty parser eon perlomk gap vortex bzip2

FIGURE 5.46 The average memory access penalty in clock cycles per data memory reference coming from L1
and L2 is shown for the ARM processor when running Minnespec. Although the miss rates for L1 are significantly
higher, the L2 miss penalty, which is more than five times higher, means that the L2 misses can contribute
significantly.

Copyright © 2014 Elsevier Inc. All rights reserved.

25% [===

L1 Data Miss Rate
L2 Data Miss Rate
20% g —&— L3 Data Miss Rate
15% ----------rmmmmmmm e LR -
L0 e it & CEE T
5%
0%

FIGURE 5.47 The L1, L2, and L3 data cache miss rates for the Intel Core i7 920 running the full integer
SPECCPU2006 benchmarks.

Copyright © 2014 Elsevier Inc. All rights reserved. 48

1 #include <x86intrin.h>
2 ffdefine UNROLL (4)
3 Jfdefine BLOCKSIZE 32

4

25
26
Z /‘
28
29
30
31
32

33
34

void do_block (int n, int si, int sj, int sk,
double *A, double *B, double *C)
|
for (int i = si; i < si+BLOCKSIZE; i+=UNROLL*4)
for (int j = sj; j < sj+BLOCKSIZE; j++) |
_ m256d c[4];
for (int x = 0; x < UNROLL; x++)
c[x] = _mm256_load_pd(C+i+x*4+j*n);
I* cx] = €Li103] */
for(int k = sk; k < sk+BLOCKSIZE; k++)
{
__m256d b = _mm256_broadcast_sd(B+k+j*n);
/* b =BLkI[]] */
for (int x = 0; x < UNROLL; x++)
clx] = _mm256_add_pd(c[x], /* c[x]+=A[iI[kI*b */

_mm256_mul_pd(_mm256_load_pd(A+n*k+x*4+1i),

for (int x = 0; x < UNROLL; x++)
_mm256_store_pd(C+i+x*4+j*n, c[x]);
[CE3 1L == elx]. */

\

void dgemm (int n, double* A, double* B, double* C)

for (int sj = 0; sj < n; sj += BLOCKSIZE)
for (int si = 0; si < n; si += BLOCKSIZE)
for (int sk = 0; sk < n; sk += BLOCKSIZE
do. blockin, $iu 53, sk. Ay B L)

Copyright © 2014 Elsevier Inc. All rights reserved.

b));

FIGURE 5.48 Optimized C version of DGEMM from Figure 4.80 using cache blocking. These changes are the
same ones found in Figure 5.21. The assembly language produced by the compiler for the do_block function is
nearly identical to Figure 4.81. Once again, there is no overhead to call the do_block because the compiler

inlines the function call.

49

B 32x32 W 160x160 = 480x480 = 960x960

16.0 7
12.0
w
&
9 807
[T
o
4.0

Unoptimized AVX AVX + unroll AVX + unroll +
blocked

FIGURE 5.49 Performance of four versions of DGEMM from matrix dimensions 32x32 to 960x960. The fully
optimized code for largest matrix is almost 15 times as fast the unoptimized version in Figure 3.21 in Chapter 3.

Copyright © 2014 Elsevier Inc. All rights reserved. 50

100 \

724

v —» Host-ordered queue
—» Drive-ordered queue

9987

FIGURE 5.50 Example showing OS versus disk schedule accesses, labeled host-ordered versus drive-
ordered. The former takes three revolutions to complete the four reads, while the latter completes them in just
three-fourths of a revolution (from Anderson [2003]).

Copyright © 2014 Elsevier Inc. All rights reserved.

Problem category Problem x86 instructions

Access sensitive registers without Store global descriptor table register (SGDT)
trapping when running in user mode Store local descriptor table register (SLDT)
Store interrupt descriptor table register (SIDT)
Store machine status word (SMSW)

Push flags (PUSHF, PUSHFD)

Pop flags (POPF, POPFD)

When accessing virtual memory Load access rights from segment descriptor (LAR)
mechanisms in user mode, instructions | Load segment limit from segment descriptor (LSL)
fail the x86 protection checks Verify if segment descriptor is readable (VERR)

Verify if segment descriptor is writable (VERW)
Pop to segment register (POP CS, POP SS, . . .)
Push segment register (PUSH CS, PUSH SS, . . .)
Far call to different privilege level (CALL)

Far return to different privilege level (RET)

Far jump to different privilege level (JMP)
Software interrupt (INT)

Store segment selector register (STR)

Move to/from segment registers (MOVE)

FIGURE 5.51 Summary of 18 x86 instructions that cause problems for virtualization [Robin and Irvine, 2000].
The first five instructions in the top group allow a program in user mode to read a control register, such as
descriptor table registers, without causing a trap. The pop flags instruction modifies a control register with
sensitive information but fails silently when in user mode. The protection checking of the segmented architecture
of the x86 is the downfall of the bottom group, as each of these instructions checks the privilege level implicitly
as part of instruction execution when reading a control register. The checking assumes that the OS must be at
the highest privilege level, which is not the case for guest VMs. Only the Move to segment register tries to modify
control state, and protection checking foils it as well.

Copyright © 2014 Elsevier Inc. All rights reserved. 52

. ¥ Compiler

Mo

Interface m

Computer

Input

Evaluating
performance

Processor

Unn Fig. 1

Copyright © 2014 Elsevier Inc. All rights reserved.

53

for (int J = 0g .J € ny ++j)
{
double cij = CLi+j*n]; /* cij = CLilLj] */
for(int k = 0; k < n; k++)
ciJ 4= A[i+k*n] * B[k+j*nl; /* cij += ALTILKI*BLKIL[J] */
CLi+j*n] = cij; /* CLilLj] = cij */
|

Unn Fig. 2

Copyright © 2014 Elsevier Inc. All rights reserved.

54

TLBmiss:
mfcO $kl,Context
Tw $k1,0(%$k1)
mtcO $kl,Entrylo
tlbwr
eret

Unn Fig. 3

copy address of PTE into temp $kl

put PTE into temp $kl1

put PTE into special register Entrylo
put EntrylLo into TLB entry at Random
return from TLB miss exception

Copyright © 2014 Elsevier Inc. All rights reserved.

55

31 30 29 11 100 9 8 ¢ & ©®» 4 3 2 1 0O
B QO O =5z zwe o o o0 110 0 212(0 1 1 O O
Cache block Block offset
number
Block address
Unn Fig. 4

Copyright © 2014 Elsevier Inc. All rights reserved.

for [=1:8
for J=1:8000
ACI,J)=B(I,0)+A(d,I);
end
end

Unn Fig. 5

struct entry f{
int sreclP; // remote IP address
char URL[128]; // request URL (e.g., “GET index.html1”)
long long refTime; // reference time
int status; // connection status
char browser[64]; // client browser name
} Tog [NUM_ENTRIES];

Unn Fig. 6

Copyright © 2014 Elsevier Inc. All rights reserved.

58

Memory technology Typical access time $ per GiB in 2012

SRAM semiconductor memory 0.5-2.5ns | $500-$1000

DRAM semiconductor memory 50-70 ns $10-%20

Flash semiconductor memory 5,000-50,000 ns $0.75-$1.00
Magnetic disk ~ 5,000,000-20,000,000 ns | $0.05-$0.10

Table 1

Copyright © 2014 Elsevier Inc. All rights reserved.

Decimal address Binary address Hit or miss Assigned cache block
of reference of reference in cache (where found or placed)

10110, miss (5.60) (10110,,, mod 8) = 110,
26 11010,(WO miss (5.6¢) (11010tw0 mod 8) = 010, .
Do 10110,, hit (10110,,, mod 8) = 110,
26 11040 . hit (11010,,, mod 8) = 010,
16 10000, , miss (5.6d) (10000,,,, mod 8) = 000,
3 00011, miss (5.6e) (00011, mod 8) =011
16 10000, hit (10000,,,, mod 8) = 000, ,
18 10010,, miss (5.6f) (10010,,, mod 8) = 010,
16 10000,, . hit (10000,,,, mod 8) = 000,

Table 2

Copyright © 2014 Elsevier Inc. All rights reserved.

60

Block address Cache block

0] (O modulo 4) =0
§) (6 modulo 4) = 2
8 (8 modulo 4) =0

Table 3

Copyright © 2014 Elsevier Inc. All rights reserved.

61

Address of memory Contents of cache blocks after reference

0 miss Memory[O]
8 miss Memory[8]
0 miss Memory[O]
6 miss Memory[O] Memory[6]
8 miss Memory[8] Memory[6]

Table 4

Copyright © 2014 Elsevier Inc. All rights reserved.

Block address | Cacheset

0 (O modulo 2) = 0O
6 (6 modulo 2) = O
8 (8 modulo 2) = O

Table 5

Copyright © 2014 Elsevier Inc. All rights reserved.

Address of memory Contents of cache blocks after reference

block accessed | Set0 | Seto | Seti | Seti

0 miss Memory[O]

8 miss Memory[O] Memory[8]
0 hit Memory[O] Memory[8]
6 miss Memory[O] Memory[6]
8 miss Memory[8] Memory[6]

Table 6

Copyright © 2014 Elsevier Inc. All rights reserved.

Address of memory Contents of cache blocks after reference

block accessed Block0 | Block1 | Block2 | Block3 _

0 miss Memory[O

8 miss Memory[O] Memory[8]

0 hit Memory[0] Memory[8]

6 miss Memory[O] Memory[8] Memory[6]
8 hit Memory[O] Memory[8] Memory[6]

Table 7

Copyright © 2014 Elsevier Inc. All rights reserved. 65

Table 8

1. L1 cache
2. L2 cache

3. Main memory
4. TLB

a. A cache for a cache
b. A cache for disks
c. A cache for a main memory

d. A cache for page table entries

Copyright © 2014 Elsevier Inc. All rights reserved.

66

Number of sets Blocks per set

Direct mapped Number of blocks in cache 1

Number of blocks in the cache

Set associative . Associativity (typically 2-16)
Associativity

Fully associative 1 Number of blocks in the cache

Table 9

Copyright © 2014 Elsevier Inc. All rights reserved. 67

Associativity Location method Comparisons required

Direct mapped Index i
Set associative Index the set, search among elements Degree of associativity
il Search all cache entries Size of the cache
u
Separate lookup table 0
Table 10

Copyright © 2014 Elsevier Inc. All rights reserved.

Table 11

31 30 29

11 10 9 8 7 6 5 4 3 2 1 O

0

0

o o o 10 O 10 12 1 O O

Cache block Block offset
number

Block address

Copyright © 2014 Elsevier Inc. All rights reserved. 69

Starting LBA | _ Length

Read (24 8
Read 100 16
Read 9987 1
Read 26 128

Table 12

Copyright © 2014 Elsevier Inc. All rights reserved.

Read 26 128
Read 100 16
Read (24 8
Read 9987 1

Table 13

Copyright © 2014 Elsevier Inc. All rights reserved.

71

Table 14

for (I=0: I<8; I++)
for (J=0; J<8000; J++)
ALTJLJ]=BLIJLOJ+ALJILI];

Copyright © 2014 Elsevier Inc. All rights reserved.

72

Table 15

for I=1:8
for J=1:8000
ACI,J)=B(I,0)+A(J,I);
end
end

Copyright © 2014 Elsevier Inc. All rights reserved.

73

3,180, 43, 2,191, 88, 190, 14, 181, 44, 186, 253

Table 16

Copyright © 2014 Elsevier Inc. All rights reserved.

74

31-10 9-5 4-0

Table 17

Copyright © 2014 Elsevier Inc. All rights reserved. 75

0 4 16 182 232 160 1024 | 30 140 3100 @ 180 2180

Table 18

Copyright © 2014 Elsevier Inc. All rights reserved.

Write through, non-write allocate

Write back, write allocate

Table 19

Copyright © 2014 Elsevier Inc. All rights reserved.

77

Data Reads per Data Writes per Instruction Cache Data Cache | Block Size
1000 Instructions | 1000 Instructions Miss Rate Miss Rate (byte)

0.30%

2%

Table 20

Copyright © 2014 Elsevier Inc. All rights reserved.

78

Table 21

0,2,4,0, 8, 10, 12, 14, 10, ...

Copyright © 2014 Elsevier Inc. All rights reserved.

79

8: 4%

16: 3%

32: 2%

64: 1.5%

128: 1%

Table 22

Copyright © 2014 Elsevier Inc. All rights reserved.

80

2 KiB 8.0% 0.66 ns
P2 4 KiB 6.0% 0.90 ns

Table 23

Copyright © 2014 Elsevier Inc. All rights reserved.

1 MiB

95%

5.62 ns

Table 24

Copyright © 2014 Elsevier Inc. All rights reserved.

82

9AI}RI0SSY
39S Aem-ysig ‘ayse)
[9A37 pU023S Y}IM
ajyey ssIA eqold

poads aAneId0SSY

)9S Aem-jysia
‘ayoes |9A97 puodas

paddep-}29.11q
‘ayoen |99 puodas
UM 9jey ssiN 1eqol

paads paddep-}0341Q
‘ayoen |9A9a7 puodas

uononisuj 12d ajeyssiiN
ayoes |9Aa1)siid

swi]l
$S999y AlowWd\ ute\

paoads 10ss920.d

sliels
Kiowa\ ON ‘I1d) 9seq

1.5%

28 cycles

3.5%

12 cycles

7%

100 ns

2 GHz

1.5

Table 25

83

Copyright © 2014 Elsevier Inc. All rights reserved.

3 Years

1 Day

Table 26

Copyright © 2014 Elsevier Inc. All rights reserved.

84

Page Utility or B-Tree Index Page

Depth (Number of Disk Access
Page Size (KiB) Accesses Saved) Cost (ms) Utility/Cost
2 6.49 (or 10g,(2048/16x0.7)) 10.2 0.64
4 7.49 10.4 0.72
8 8.49 10.8 0.79
16 9.49 11.6 0.82
32 10.49 13.2 0.79
64 11.49 16.4 0.70
128 12.49 22.8 0.55
256 13.49 35.6 0.38

Table 27

Copyright © 2014 Elsevier Inc. All rights reserved. 85

DRAM Cost Page Size Disk Cost Disk Access Rate
Year ($/MiB) (KiB) ($/disk) (access/sec)

1987 5000 15,000
1997 15 8 2000 64
2007 0.05 64 80 83

Table 28

Copyright © 2014 Elsevier Inc. All rights reserved.

Table 29

4669, 2227, 13916, 34587, 48870, 12608, 49225

Copyright © 2014 Elsevier Inc. All rights reserved.

87

Physical Page
Number

1 11 12
1 7 4
1 3 6
0 4 9

Table 30

Copyright © 2014 Elsevier Inc. All rights reserved.

m Physical Page or in Disk

5
Disk
Disk

6

9

11
Disk

Disk
Disk

Rk |lo|o|Rr|OR|R|R|IO|O|R

12

Table 31

Copyright © 2014 Elsevier Inc. All rights reserved.

89

Virtual Address Size Page Table Entry Size

32 bits

8 KiB

4 bytes

Table 32

Copyright © 2014 Elsevier Inc. All rights reserved.

90

Physical DRAM
Virtual Address (bits) Installed Page Size PTE Size (byte)

16 GiB 4 KiB

Table 33

Copyright © 2014 Elsevier Inc. All rights reserved.

_EntryID | Valid | VAPage

Page | Modified PA Page
140 1 RW 30

1 1

2 0 40 0 RX 34
3 1 200 1 RO 32
4 4 280 0 RW 3l

Table 34

Copyright © 2014 Elsevier Inc. All rights reserved.

92

Table 35

Address of Contents of Cache Blocks After Reference
Memory Evicted
Block Accessed Block m

0 Miss Mem[O]

1 Miss Mem[O] Mem[1]

2 Miss Mem[0] Mem[2] Mem[1]

3 Miss Mem[0] Mem[2] Mem[1] Mem[3]

4 Miss 0 Mem([4] Mem[2] Mem[1] Mem[3]

Copyright © 2014 Elsevier Inc. All rights reserved.

93

TLB Misses per NPT TLB Miss Page Faults per Shadowing Page
1000 Instructions Latency 1000 Instructions Fault Overhead

200 cycles 0.001 30,000 cycles

Table 36

Copyright © 2014 Elsevier Inc. All rights reserved. 24

Priviliged

o/S Performance 1/0 Access Time
Accesses Impact to Performance 1/0 Access (Includes Time
per 10,000 Trap to the |Impact to Trap| per 10,000 | to Trap to Guest
Base CPI | Instructions| Guest 0/S to VMM Instructions 0/S)
1.5 120 15 cycles 175 cycles 30 1100 cycles
Table 37

Copyright © 2014 Elsevier Inc. All rights reserved.

XLO] ++;

XL11 = 3; XLO] = 5;

X[1] +=2;

Table 38

Copyright © 2014 Elsevier Inc. All rights reserved.

96

Table 39

Copyright © 2014 Elsevier Inc. All rights reserved.

97

Benchmark A misses-per-instruction 0.30% 0.12%
Benchmark B misses-per-instruction 0.06% 0.03%

Table 40

Copyright © 2014 Elsevier Inc. All rights reserved.

Private Cache Shared Cache m

2

20

180

Table 41

Copyright © 2014 Elsevier Inc. All rights reserved.

99

a. Mesa / gcc

b. mct / swim

Table 42

Copyright © 2014 Elsevier Inc. All rights reserved. 100

Table 43

Question 1:
Answer:

Question 2:
Answer:

Question 3:
Answer:

Question 4:
Answer:

Where can a block be placed?
One place (direct mapped), a few places (set associative),
or any place (fully associative).

How is a block found?

There are four methods: indexing (as in a direct-mapped
cache), limited search (as in a set-associative cache), full
search (as in a fully associative cache), and a separate
lookup table (as in a page table).

What block is replaced on a miss?
Typically, either the least recently used or a random block.

How are writes handled?
Each level in the hierarchy can use either write-through
or write-back.

Copyright © 2014 Elsevier Inc. All rights reserved.

101

