Assignment A6

Due Date: December 7

Purpose
This is it! Finally!

The purpose of this last (and easier?) project is to implement a priority queue in the form of a heap. This will be done using a standard array.

Problem
For no reason whatsoever, Myquel Gousilini, a professor at a prestigious New England college, needs a priority queue of integers, where the smallest value has the highest priority. You, the owner of a software company called Algo-Rhythms, are called in to write this software. You decide to implement a heap, storing integers in a dynamic array.

Input
Your program should first prompt for two integers, \(n \) and \(m \) (see below). You may assume these will be input correctly. The program should then repeatedly show a menu of the following options:

- \(i \ x \) - insert \(x \) into its proper place in the heap, where \(x \) is an integer and \(x > 0 \).
- \(d \) - delete the highest priority item. A message should appear if the heap is empty.
- \(v \) - view the highest priority item. A message should appear if the heap is empty.
- \(s \) - display (show) the entire array. Values should be displayed in tree-level order (see Output, below).
- \(n \) - make a new array. This entails deleting the old array and creating a new one.
- \(q \) - quit.

Output
The program should display the items specified in the input. If the \(s \) (show tree) option is chosen, the array should be displayed in tree-level order, with two spaces between each integer:

```
1
2  3
4  5  6  7
8  9  10  11  12  13  14  15
```

etc.
Specifics

- The program should be written in C++ using the following class declaration:

  ```cpp
  class heap {
      int * theHeap;
      int n, m;
  public:
      heap ();
      void insertValue (int);
      void deleteValue ();
      int getValue ();
      void display ();
      void newHeap ();
  }
  ```

- You may add additional **private** data members or methods.

- The heap should be stored as an array. The array initially should be size \(n \). If the array is full and an integer is to be added, then the array should be increased by \(n \) each time such an addition is to take place. If the array has \(m \) locations empty, where \(m > n \), then the array size should be decreased by \(n \). This functionality will necessitate additional private methods in the class. **Whenever the array size is changed, display an appropriate message**, such as “Array increased to size 12.”

- Use good commenting techniques.

Notes

- Implementing this program should be much easier than previous projects.

- Email the program to me as usual. Remember to use your last name and A6 in your submission file, as in `gousieA6.cpp`. Hand in hard copy in the envelope on my door by 5:00 PM on Monday, December 10th.

- Write/print and sign the Wheaton Honor Code Pledge on what you turn in: “I have abided by the Wheaton College Honor Code in this work.”

I got distracted by learning.

– Amy Hopkinson ’09, in a Theory of Computation class.