
Comparisons on Scrum Team Strategies: A multi-agent
Simulation

 Zhe Wang
Lincoln University

New Zealand

Zhe.wang@lincolnuni.ac.nz

ABSTRACT

Scrum is a type of agile process that incrementally, iteratively and

continuously deliver software based on sprint time box. It is

composed by User Stories, product backlog, sprint backlog, scrum

team and sprints. Scrum team take user stories from product

backlog into sprint backlog to start each sprint and deliver

products at the end of each sprint. Sprint retrospective and review

occurs at the end of each sprint to evaluate the delivered products

and team performance. Based on the Scrum guide, scrum is easy

to be understood but hard to be measured. Especially, it is

depended largely on the performance of team dynamics referring

to team compositions and task allocations, as its optimization

make big impact on each sprint result. A new type of strategy

called Intelligent pair strategies are tested in this paper to compare

their performance under various task set and scrum team context.

CCS Concepts

•Computing methodologies~Modeling and

simulation~Simulation types and techniques~Agent / discrete

models

Keywords

Scrum, team dynamics, agent-based modelling, multi-agent

system, team Strategies, solo programming, pair programming.

1. INTRODUCTION
Agile is a concept of creating software through iterative and

incremental process. (Beck & Fowler, 2001) describes agile as

“Individuals and interactions over processes and tools; Working

software over comprehensive documentation; Customer

collaboration over contract negotiation; Responding to change

over following a plan.” Scrum is one of the agile processes that

realizes the agile manifesto where it splits user stories into several

parts and aims to achieve part of them within a time period which

can last from one day to thirty days as a sprint. Within each sprint,

the process is like the waterfall model which is also composed of

requirement analysis, system design, coding, testing and

maintenance. However, there are more opportunities for scrum

team and customer (product owner) to discuss on the software

during the process because there are several sprints in an agile

project and each sprint contains requirement analysis which may

be refined at each sprint. Each sprint is able to deliver a higher

project success rate compared to the waterfall approach because

the size of software is smaller, its design goal is clearer, and the

Scrum team is fully focused on the project. Scrum is composed by

user stories, tasks, sprints, sprint meeting, deliverable software

and Scrum team. User stories are designed based on user

requirements. Each user story contains one or more tasks that

need to be completed by the Scrum team in one sprint or several

sprints. Scrum team will have daily sprint meeting to discuss what

has been done and what needs to be done. Scrum team is

composed of several members, which have different skills and

capabilities, such as designer, developer and tester. Scrum team

members need to interact and collaborate with each other to

achieve the goal of the team incrementally or iteratively through

sprints.

Although the Agile Scrum approach is an improvement over the

waterfall model, it still suffers from several problems. One such

problem is the team dynamics, which largely affect the quality,

risk and value of the process. Team dynamics refers to team

composition, task allocation, interactions between team members

and how they work together. (Song et al., 2015) define effective

team dynamics according to the following criteria indicated by

(Nadler, Hackman & Lawler, 1979), there are:

 team performance (i.e., the product of teamwork meets

the expectations of those who use it);

 member satisfaction (i.e., each team member's

experience contributes to his or her personal well-being

and development); and

 team adaptation (i.e., the team experience enhances each

member's capability to work and learn together in the

future)

A team consisting of experienced and highly skilled members will

normally perform better than a junior team that is less experienced

and skilled. In an Agile Scrum environment, the composition of a

team will greatly affect the performance of the team, because the

scrum team needs higher level of cooperation among the team

members to achieve the sprint goal. Skills, experience and

capabilities of the team members affect the performance of the

team. Varying methods of tasks allocation may result in different

outcomes and may affect the delivery of the software. It would be

useful to investigate what kind of team dynamics leads to a more

efficient and high-quality software delivery because team

dynamics is affected by several factors such as capability, skills,

roles and responsibilities and how well the members work

together. Our study investigates how team composition, task

allocations and team strategies can be used to improve the

performance of the team in delivering a timely and high-quality

software.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

ICCMS '20, February 26–28, 2020, Brisbane, QLD, Australia
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7703-4/20/02…$15.00

DOI: https://doi.org/10.1145/3408066.3408087

120

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3408066.3408087&domain=pdf&date_stamp=2020-08-11

2. REVIEW

2.1 Scrum
Software products can be very complex because of complexity in

development, requirement analysis, technology adoption,

functional complexity. Complexity mainly comes from the user

requirements, which need to be addressed by the development

team in conjunction with the software user who is the product

owner.

SCRUM is one of the more popular agile methods which can deal

with complex software system production. It is a software

development process that was developed by Ken Schwaber and

Jeff Sutherland in the United States which has been widely

adopted and has become a common software development method

(Schwaber & Sutherland, 2017)

 SCRUM is defined as “A framework within which people can

address complex adaptive problems, while productively and

creatively delivering products of the highest possible value.” This

section describes Scrum and its processes in detail as shown in

Figure 1.

2.2 Pair Programming
The pair programming(Arisholm, Gallis, Dyba, & Sjoberg, 2007;

Bryant, Romero, & du Boulay, 2008; Chen, 2018; Cockburn &

Williams, 2001; Coman, Robillard, Sillitti, & Succi, 2014; Dybå,

Arisholm, Sjøberg, Hannay, & Shull, 2007; Gómez et al., 2017;

Haider & Ali, 2011; Noori & Kazemifard, 2015; Z. Wang, 2018)

task allocation for each task is much more complex than solo

programming, because it needs to take two agents working on a

task. Normally, the scrum master agent will still receive all the

corresponding agents’ preference value on the task list, and the

scrum master agent should take the task which has the highest

priority to be allocated first. The scrum master agent will choose

the most appropriate pair for the task. Such as the complex task

can be worked by expert-novice pair, expert-intermediate pair or

intermediate-intermediate pair. The scrum master should choose

expert-novice pair as the best choice as an example. If there are

more than two experts available, the scrum master agent should

compare those experts based on its preference value on the same

task and pick the most appropriate expert. Then the scrum mater

agent can pair the chosen expert with the novice to work on the

task. For complex tasks, the scrum master agent should always get

the high-level agent choose first than the low-level agent to form

the pair, because without the high-level agent, this complex task

will not be allocated even there are novice agent available.

3. STRATEGIES

3.1 Intelligent Solo and Pair Programming

Strategies Design I (IPI)

3.1.1 Agent Decision Strategy
The agent decision strategy as shown in Table 1 is used to

describe the agent self-control on what task it will task based on

its own preference, such as novice will more like to work on easy

task, intermediate will more like to work on intermediate task and

expert will more like to work on complex task. The agent decision

strategy will also service for its own benefit and motivation.

However, such strategy would be better to take care all the

member of the team, as novice would have more chance to get the

easy task it can do, and expert will in charge of the complex task

and be the right person to take the complex role. Intermediate

agent also has more chance to get the intermediate task.

The pair agent choosing is different from task selection, it is

totally based on the scrum master agent’s decision making

through the rules of the strategy. Such process is always

happening after the first agent has already choose by the scrum

master agent. The maximum benefit of pair is considerate for

enhancing the pairing benefit, rather than any agent can pair with

any agent. Such as the expert agent will not pair with another

expert, as it may cause conflict, rather than benefit. Intermediate

will not pair with intermediate to work on intermediate task, but

two intermediates can pair to work on complex task. Novice is

happy to pair with novice to work on easy task, However, we do

not recommend to pair novice with intermediate or expert to work

on easy task, because this is actually not well in the benefit of

pairing, we would prefer to allocate intermediate or expert to

work solo in easy task as well if there is no novice currently

available.

Based on the literature of pairing programing, expert can lead

intermediate or novice to work on complex task, and it’s better for

expert to lead novice to work on intermediate task as well, and we

do not recommend using expert to lead intermediate to work on

intermediate task, because this is waste of team resource and may

cause conflict between the expert and the intermediate, because

intermediate alone can work on the intermediate task. However,

intermediate would be very happy to lead novice to work on the

intermediate task.

Table 1. agent decision strategy in the intellgeint solo and pair

3.1.2 Task Allocation (a)
The task allocation as shown in Table 2 is happened later than all

agents has shown it preference on working tasks. The purpose of

introduce task allocation after all agents has done its preferred

selection is because this will makes the task allocation process

more feasible and reliable, for example, if three novice want to

work on an easy task, then the task allocation will first choose the

most appropriate novice to be the first agent in doing the task and

then help this novice agent to choose a partner from the other two

novice to form a paired team. This is normally how agents shows

it preference value and task get allocated in pair. Then scrum

master agent will help each agent to choose the best partner based

on the maximum benefit of pairing. It is not compulsory that each

task must be worked by two agents, or each agent must be paired

to work together, as this is an intelligent way of pairing, we will

only allow pair that does not do any harmful. If a pair that may

cause conflict, we will not set the pair to work and let the solo

programming to go for the task. Pairing is always the first choice

121

for each task allocation, but this a pre-requirement is that the pair

will not cause any conflict, otherwise solo is the choice. Those

harmful pairing including expert with expert pair, expert with

intermediate to work on intermediate/easy task, intermediate with

intermediate to work on intermediate/easy task.

Table 2. task allocation(a) IP I TYPE A

The task allocation and agent strategy can be formed into

integrated together in the current algorithm design, based on

preference-value for the first agent selection and maximum

benefit of pair for the second agent selection. That selection can

only be done by the system master agent, instead of the working

agents themselves, as working agents themselves can only shows

its preference value on task selection.

3.2 Algorithm Explanation on How Preference

Value Support IP Strategy Implementation
The example shows tasks and agents distribution as Table 3. The

agent and task have 1-10 levels, where level 1 means the easiest

task and novice agent, while the level 10 means the most complex

task and expert agent. 1-4 level are regards as novice and easy, 5-

7 are regards as intermediate, 8-10 are regards as complex and

expert.

Table 3. algorithm explanation

Firstly, each agent will select the task based on its own preference

value on the task(Z. Wang, 2019).

For example, the task 46 is an easy task and it will be allocated to

the best available novice as the first agent, then pair based on

maximized the pairing benefit with another novice or working in

solo.

For example, Task 31 is the intermediate task, those agents may

send its preference value to take the task, there are all the expert

agents and intermediate agents. In this situation, if agent 7 is

available, then this agent is the best first agent. However, if agent

7 is not available, then the scrum master agent should choose

agent 3 or agent 8 as the best first agent, if there is no intermediate

agent available, then the scrum master agent will choose agent 5

or other expert. Intermediate agent has higher priority than expert

agent on intermediate task allocation, even its preference value is

negative, because that intermediate agent can do the intermediate

task with just little lower capability. Whatever who get the

intermediate task, then pair based on maximized the pairing

benefit with another novice or working in solo.

For example, task 21 is the complex task, those agents may send

its preference value to take the task, there are all the expert agent

and intermediate agent. The scrum master agent should find the

most perfect expert agent as the first agent, such as agent 5. If

agent 5 is not available, then it should get another expert such as

agent2. If expert get the complex task, then pair based on

maximum the pairing benefit with another novice or intermediate

or solo. However, if there is no expert, then the scrum master

agent must find two best intermediate agents available before

deciding who is the best first agent. Because a single intermediate

cannot work on complex task.

3.3 Intelligent Solo and Pair programming

Strategies Design II (IPII)

3.3.1 Task Allocation (a)
 Further adjusted Intelligent pair and more help low level

novice and low-level intermediate agent

 Even negative agent (novice and intermediate) can be the

leader of the team

 Negative novice can lead an easy task to pair

 Negative intermediate can lead an intermediate task to pair

 The new type of IP strategy shows in Table 4.

Table 4. task allocation IP II TYPE A

4. EXPERIMENTS
All experiments is carried on based on the tool developed(Wang,

Liu, & Wang, 2015; Z. Wang, 2018; Zhe Wang, 2018, 2019a,

2019b)

4.1 Idle Testing in IP (Intelligent solo and Pair

programming) Strategy I and II

4.1.1 Testing Scope
Table 5 shows the team distribution and three different task sets,

set I, II and III. The team is composed by 5 agents with various

level as shown in the table 5. The task set is composed by 10 user

stories, which each user story has 5 different tasks as shown in

table 5.

Table 5. Team and Task set

1 2 3 4 5 6 7 8 9 10

 A4 A3 A1 A5 A2

122

level 1 2 3 4 5 6 7 8 9 10

Set I 1 1 1 1 1

Set

II

 1 1 1 1 1

Set

III

 1 1 1 1 1

4.1.2 Testing in Task Set I
In this testing case, I use the above 5 agents to work on the task

set I for repeated 10 times.

Table 6. agent level and its idel time comparison

 Average

Complete time

Average

working time

Average

idle time

IP I 87.5 398.5 21

IP II 88.3 405.3 19.4

4.1.3 Testing in Task Set II
In this testing case, I use the above 5 agents to work on the task

set II for repeated 10 times.

Table 7. the agent compleiton time, working time and idle

time

 Average

Complete time

Average

working time

Average

idle time

IP I 78.5 361.4 13

IP II 79.1 367.4 9.9

4.1.4 Testing in Task Set III
In this testing case, I use the above 5 agents to work on the task

set III for repeated 10 times.

Table 8. agent completion time, working time and idle time

 Average

Complete time

Average

working time

Average

idle time

IP I 81.3 369 22.9

IP II 82.7 390.3 8.3

Figure 1. Agent Idle time in Each run of the 10 runs

5. SUMMARY
Figure 1 shows each agent’s idle time accumulation during the

three type of task set testing by using IPI or IPII strategy

respectively. It can be observed that agent 4 and agent 3 has the

highest accumulated idle time, this is because agent 4 is novice

agent at level 3 and agent 3 is the lowest intermediate agent at

level 5. Which further give us hints that the team working strategy

design should considerate about the low-level agent, it is those

agents that result the team idle time to be high.

Based on table 6 we can observe that IPI with completion time

87.5 is similar to IPII which is 88.3, their idle time 21(IPI) and

19.4(IPII) are also similar. In table 7 we can observe that IPI with

completion time 78.5 and IPII with completion time 79.1,

however the idle time of IPII (9.9) is lower than IPI (13). In table

8, the completion time of IPI and IPII are similar, however the

idle time of IPII (8.3) is much lower than IPI (22.9). which gives

us hints that the IPII do much better than IPI in idle time reduction.

6. ACKNOWLEDGMENTS
My thanks to Dr Patricia Anthony and Dr Stuart Charters at

Lincoln University, New Zealand.

7. REFERENCES
[1] Arisholm, E., Gallis, H., Dyba, T., & Sjoberg, D. I. K. (2007).

Evaluating Pair Programming with Respect to System

0 10 20 30 40 50 60 70

agent1

agent2

agent3

agent4

agent5

Agent1

Agent2

Agent3

Agent4

Agent5

Agent1

Agent2

Agent3

Agent4

Agent5

Agent1

Agent2

Agent3

Agent4

Agent5

Agent1

Agent2

Agent3

Agent4

Agent5

agent1

agent2

agent3

agent4

agent5

Agent1

Agent2

Agent3

Agent4

Agent5

Agent1

Agent2

Agent3

Agent4

Agent5

Agent1

Agent2

Agent3

Agent4

Agent5

Agent1

Agent2

Agent3

Agent4

Agent5

IP Strategy I&II Task Set I&II&III

IP1 TASK I IP II TASK I IP1 TASK II IP II task II IP1 TASK III IP II Task III

123

Complexity and Programmer Expertise. IEEE Transactions

on Software Engineering, 33(2), 65-86.

doi:10.1109/TSE.2007.17

[2] Beck, K., & Fowler, M. (2001). Planning Extreme

Programming.

[3] Bryant, S., Romero, P., & du Boulay, B. (2008). Pair

programming and the mysterious role of the navigator.

International Journal of Human-Computer Studies, 66(7),

519-529. doi:https://doi.org/10.1016/j.ijhcs.2007.03.005

[4] Chen, K. (2018). Do Pair Programming Approaches

Transcend Coding? Measuring Agile Attitudes in Diverse

Information Systems Courses. JISE, 29, 53-64.

[5] Cockburn, A., & Williams, L. (2001). The costs and benefits

of pair programming. In Extreme programming examined

(pp. 223-243): Addison-Wesley Longman Publishing Co.,

Inc.

[6] Coman, I. D., Robillard, P. N., Sillitti, A., & Succi, G. (2014).

Cooperation, collaboration and pair-programming: Field

studies on backup behavior. Journal of Systems and Software,

91, 124-134. doi:https://doi.org/10.1016/j.jss.2013.12.037

[7] Dybå, T., Arisholm, E., Sjøberg, D. I. K., Hannay, J. E., &

Shull, F. (2007). Are Two Heads Better than One? On the

Effectiveness of Pair Programming. IEEE Software, 24(6),

12-15. doi:10.1109/MS.2007.158

[8] Gómez, O. S., Aguileta, A. A., Aguilar, R. A., Ucán, J. P.,

Rosero, R. H., & Cortes-Verdin, K. (2017). An Empirical

Study on the Impact of an IDE Tool Support in the Pair and

Solo Programming. IEEE Access, 5, 9175-9187.

doi:10.1109/ACCESS.2017.2701339

[9] Haider, M., & Ali, I. (2011). Evaluation of the Effects of Pair

Programming on Performance and Social Practices in

Distributed Software Development.

[10] Noori, F., & Kazemifard, M. (2015, 27-29 April 2015).

Simulation of pair programming using multi-agent and

MBTI personality model. Paper presented at the 2015 Sixth

International Conference of Cognitive Science (ICCS).

[11] Schwaber, k., & Sutherland, J. (2017). The Scrum Guide.

[12] Song, H., Chien, A. T., Fisher, J., Martin, J., Peters, A. S.,

Hacker, K., . . . Singer, S. J. (2015). Development and

Validation of the Primary Care Team Dynamics Survey.

Health Services Research, 50(3), 897-921. doi:10.1111/1475-

6773.12257

[13] Wang, L., Liu, W., & Wang, Z. (2015). The Implementation

of Mini-Enterprise Business Process Management.

[14] Wang, Z. (2018, 23-25 Nov. 2018). The Impact of Expertise

on Pair Programming Productivity in a Scrum Team: A

Multi-Agent Simulation. Paper presented at the 2018 IEEE

9th International Conference on Software Engineering and

Service Science (ICSESS).

[15] Wang, Z. (2018). Teamworking Strategies of Scrum Team:

A Multi-Agent based Simulation. Paper presented at the

Proceedings of the 2018 2nd International Conference on

Computer Science and Artificial Intelligence, Shenzhen,

China.

[16] Wang, Z. (2019a). The Compare of Solo Programming

Strategies in a Scrum Team: A Multi-agent Simulation Tool

for Scrum Team Dynamics, Cham.

[17] Wang, Z. (2019b). Estimating Productivity in a Scrum team:

A Multi-Agent Simulation. Paper presented at the

Proceedings of the 11th International Conference on

Computer Modeling and Simulation, North Rockhampton,

QLD, Australia.

[18] Wang, Z. (2019, 18-20 Oct. 2019). P-value Based Task

Allocation in a Scrum Team: A Multi-Agent Simulation.

Paper presented at the 2019 IEEE 10th International

Conference on Software Engineering and Service Science

(ICSESS).

124

https://doi.org/10.1016/j.ijhcs.2007.03.005
https://doi.org/10.1016/j.jss.2013.12.037

