Project OS5

Due Date: December 10

This is an **individual** project.

Purpose

You will simulate a working set memory management policy and generate some wonderful statistics. In addition, you will use the statistics to produce some graphs and to answer a question that will count toward your final exam grade.

Problem

A certain program references various pages in memory; each page is identified with 1 digit. When the program is run, the following reference string, ω , is generated:

 $\omega = 272722(28272272927222)^n 272722(272733733(373338393373737333)^{n-i+1}3637322)^n$

Assume n = 10. Based on the reference string for n, write a program that will analyze the run-time behavior when a working set memory management policy is used.

Input

Input should be the maximum Δ (see below). You'll want to use small values of Δ when you first start to make debugging easier.

Output

Your program should generate several values:

Δ	=	window size
$P(\Delta)$	=	total number of page faults
$W(\Delta)$	=	average working set size
$F(\Delta) = \frac{P(\Delta)}{ \omega }$	=	average page fault rate

Find these values for Δ ranging from 1 to 200. For debugging purposes, here are the first 5 values of Δ :

Δ	$P(\Delta)$	$W(\Delta)$	$F(\Delta)$
1	879	1.000	0.675
2	333	1.674	0.256
3	313	1.929	0.240
4	292	2.168	0.224
5	237	2.390	0.182

- Plot the following curves, using Excel or other nice graphing program: Δ vs. $P(\Delta)$, Δ vs. $W(\Delta)$, and Δ vs. $1/F(\Delta)$, for Δ ranging from 1 to 200. Be sure to adequately label the graph.
- Final exam question: From the plot of Δ vs. $1/F(\Delta)$, explain the cause of all "knees" in the graph in terms of reference string structure. Remember the Honor Code is in effect.

Notes

- The first step in getting the statistics is to generate the entire string. The notation $(2722)^n$ means repeat 2722 *n* times. As you can see, the string above will be quite long and annoying. To help you out, I've written a function that generates the entire string. You can find it on the course web page.
- Given the reference string, you will have to compute the various statistics. To do this, create a character array of size Δ and "move" the window along the reference string by one page. One of the following actions will occur:
 - 1. the page is added to the set, and none is removed
 - 2. the page is added to the set and one old page is removed
 - 3. the page is already in the set
 - 4. the page is already in the set and one old page is removed

Whenever a page is added to the set, a page fault occurs.

- Your source code is due by midnight on December 10^{th} . Hand in the hard copy and your graphs in class on December 11^{th} .
- The answer to the exam question is due at the time of the final exam on Tuesday, December 15^{th} .
- You will have a written homework assignment to do during this project's time span, so plan accordingly.

! Something's wrong- - another LATEX error message