
Chapter 4

The Processor

Copyright © 2014 Elsevier Inc. All rights reserved.

2 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.1 An abstract view of the implementation of the MIPS subset showing the major functional units and

the major connections between them. All instructions start by using the program counter to supply the instruction

address to the instruction memory. After the instruction is fetched, the register operands used by an instruction

are specified by fields of that instruction. Once the register operands have been fetched, they can be operated

on to compute a memory address (for a load or store), to compute an arithmetic result (for an integer arithmetic-

logical instruction), or a compare (for a branch). If the instruction is an arithmetic-logical instruction, the result

from the ALU must be written to a register. If the operation is a load or store, the ALU result is used as an

address to either store a value from the registers or load a value from memory into the registers. The result from

the ALU or memory is written back into the register file. Branches require the use of the ALU output to determine

the next instruction address, which comes either from the ALU (where the PC and branch offset are summed) or

from an adder that increments the current PC by 4. The thick lines interconnecting the functional units represent

buses, which consist of multiple signals. The arrows are used to guide the reader in knowing how information

flows. Since signal lines may cross, we explicitly show when crossing lines are connected by the presence of a

dot where the lines cross.

3 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.2 The basic implementation of the MIPS subset, including the necessary multiplexors and control

lines. The top multiplexor (“Mux”) controls what value replaces the PC (PC + 4 or the branch destination

address); the multiplexor is controlled by the gate that “ANDs” together the Zero output of the ALU and a control

signal that indicates that the instruction is a branch. The middle multiplexor, whose output returns to the register

file, is used to steer the output of the ALU (in the case of an arithmetic-logical instruction) or the output of the

data memory (in the case of a load) for writing into the register file. Finally, the bottommost multiplexor is used to

determine whether the second ALU input is from the registers (for an arithmetic-logical instruction or a branch) or

from the offset field of the instruction (for a load or store). The added control lines are straightforward and

determine the operation performed at the ALU, whether the data memory should read or write, and whether the

registers should perform a write operation. The control lines are shown in color to make them easier to see.

4 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.3 Combinational logic, state elements, and the clock are closely related. In a synchronous digital

system, the clock determines when elements with state will write values into internal storage. Any inputs to a

state element must reach a stable value (that is, have reached a value from which they will not change until after

the clock edge) before the active clock edge causes the state to be updated. All state elements in this chapter,

including memory, are assumed to be positive edge-triggered; that is, they change on the rising clock edge.

5 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.4 An edge-triggered methodology allows a state element to be read and written in the same clock

cycle without creating a race that could lead to indeterminate data values. Of course, the clock cycle still must be

long enough so that the input values are stable when the active clock edge occurs. Feedback cannot occur

within one clock cycle because of the edge-triggered update of the state element. If feedback were possible, this

design could not work properly. Our designs in this chapter and the next rely on the edge-triggered timing

methodology and on structures like the one shown in this figure.

6 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.5 Two state elements are needed to store and access instructions, and an adder is needed to

compute the next instruction address. The state elements are the instruction memory and the program counter.

The instruction memory need only provide read access because the datapath does not write instructions. Since

the instruction memory only reads, we treat it as combinational logic: the output at any time reflects the contents

of the location specified by the address input, and no read control signal is needed. (We will need to write the

instruction memory when we load the program; this is not hard to add, and we ignore it for simplicity.) The

program counter is a 32-bit register that is written at the end of every clock cycle and thus does not need a write

control signal. The adder is an ALU wired to always add its two 32-bit inputs and place the sum on its output.

7 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.6 A portion of the datapath used for fetching instructions and incrementing the program counter. The

fetched instruction is used by other parts of the datapath.

8 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.7 The two elements needed to implement R-format ALU operations are the register file and the ALU.

The register file contains all the registers and has two read ports and one write port. The design of multiported

register files is discussed in Section B.8 of   Appendix B. The register file always outputs the contents of the

registers corresponding to the Read register inputs on the outputs; no other control inputs are needed. In

contrast, a register write must be explicitly indicated by asserting the write control signal. Remember that writes

are edge-triggered, so that all the write inputs (i.e., the value to be written, the register number, and the write

control signal) must be valid at the clock edge. Since writes to the register file are edge-triggered, our design can

legally read and write the same register within a clock cycle: the read will get the value written in an earlier clock

cycle, while the value written will be available to a read in a subsequent clock cycle. The inputs carrying the

register number to the register file are all 5 bits wide, whereas the lines carrying data values are 32 bits wide.

The operation to be performed by the ALU is controlled with the ALU operation signal, which will be 4 bits wide,

using the ALU designed in

 Appendix B. We will use the Zero detection output of the ALU shortly to implement branches. The overflow

output will not be needed until Section 4.9, when we discuss exceptions; we omit it until then.

9 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.8 The two units needed to implement loads and stores, in addition to the register file and ALU of

Figure 4.7, are the data memory unit and the sign extension unit. The memory unit is a state element with inputs

for the address and the write data, and a single output for the read result. There are separate read and write

controls, although only one of these may be asserted on any given clock. The memory unit needs a read signal,

since, unlike the register file, reading the value of an invalid address can cause problems, as we will see in

Chapter 5. The sign extension unit has a 16-bit input that is sign-extended into a 32-bit result appearing on the

output (see Chapter 2). We assume the data memory is edge-triggered for writes. Standard memory chips

actually have a write enable signal that is used for writes. Although the write enable is not edge-triggered, our

edge-triggered design could easily be adapted to work with real memory chips. See Section B.8 of Appendix B

for further discussion of how real memory chips work.

10 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.9 The datapath for a branch uses the ALU to evaluate the branch condition and a separate adder to

compute the branch target as the sum of the incremented PC and the sign-extended, lower 16 bits of the

instruction (the branch displacement), shifted left 2 bits. The unit labeled Shift left 2 is simply a routing of the

signals between input and output that adds 00two to the low-order end of the sign-extended offset field; no actual

shift hardware is needed, since the amount of the “shift” is constant. Since we know that the offset was sign-

extended from 16 bits, the shift will throw away only “sign bits.” Control logic is used to decide whether the

incremented PC or branch target should replace the PC, based on the Zero output of the ALU.

11 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.10 The datapath for the memory instructions and the R-type instructions. This example shows how

a single datapath can be assembled from the pieces in Figures 4.7 and 4.8 by adding multiplexors. Two

multiplexors are needed, as described in the example.

12 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.11 The simple datapath for the core MIPS architecture combines the elements required by different

instruction classes. The components come from Figures 4.6, 4.9, and 4.10. This datapath can execute the basic

instructions (load-store word, ALU operations, and branches) in a single clock cycle. Just one additional

multiplexor is needed to integrate branches. The support for jumps will be added later.

13 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.12 How the ALU control bits are set depends on the ALUOp control bits and the different function

codes for the R-type instruction. The opcode, listed in the first column, determines the setting of the ALUOp bits.

All the encodings are shown in binary. Notice that when the ALUOp code is 00 or 01, the desired ALU action

does not depend on the function code field; in this case, we say that we “don’t care” about the value of the

function code, and the funct field is shown as XXXXXX. When the ALUOp value is 10, then the function code is

used to set the ALU control input. See Appendix B.

14 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.13 The truth table for the 4 ALU control bits (called Operation). The inputs are the ALUOp and

function code field. Only the entries for which the ALU control is asserted are shown. Some don’t-care entries

have been added. For example, the ALUOp does not use the encoding 11, so the truth table can contain entries

1X and X1, rather than 10 and 01. Note that when the function field is used, the first 2 bits (F5 and F4) of these

instructions are always 10, so they are don’t-care terms and are replaced with XX in the truth table.

15 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.14 The three instruction classes (R-type, load and store, and branch) use two different instruction

formats. The jump instructions use another format, which we will discuss shortly. (a) Instruction format for R-

format instructions, which all have an opcode of 0. These instructions have three register operands: rs, rt, and rd.

Fields rs and rt are sources, and rd is the destination. The ALU function is in the funct field and is decoded by the

ALU control design in the previous section. The R-type instructions that we implement are add, sub, AND, OR,

and slt. The shamt field is used only for shifts; we will ignore it in this chapter. (b) Instruction format for load

(opcode = 35ten) and store (opcode = 43ten) instructions. The register rs is the base register that is added to the

16-bit address field to form the memory address. For loads, rt is the destination register for the loaded value. For

stores, rt is the source register whose value should be stored into memory. (c) Instruction format for branch

equal (opcode =4). The registers rs and rt are the source registers that are compared for equality. The 16-bit

address field is sign-extended, shifted, and added to the PC + 4 to compute the branch target address.

16 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.15 The datapath of Figure 4.11 with all necessary multiplexors and all control lines identified. The

control lines are shown in color. The ALU control block has also been added. The PC does not require a write

control, since it is written once at the end of every clock cycle; the branch control logic determines whether it is

written with the incremented PC or the branch target address.

17 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.16 The effect of each of the seven control signals. When the 1-bit control to a two-way multiplexor is

asserted, the multiplexor selects the input corresponding to 1. Otherwise, if the control is deasserted, the

multiplexor selects the 0 input. Remember that the state elements all have the clock as an implicit input and that

the clock is used in controlling writes. Gating the clock externally to a state element can create timing problems.

(See Appendix B for further discussion of this problem.)

18 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.17 The simple datapath with the control unit. The input to the control unit is the 6-bit opcode field

from the instruction. The outputs of the control unit consist of three 1-bit signals that are used to control

multiplexors (RegDst, ALUSrc, and MemtoReg), three signals for controlling reads and writes in the register file

and data memory (RegWrite, MemRead, and MemWrite), a 1-bit signal used in determining whether to possibly

branch (Branch), and a 2-bit control signal for the ALU (ALUOp). An AND gate is used to combine the branch

control signal and the Zero output from the ALU; the AND gate output controls the selection of the next PC.

Notice that PCSrc is now a derived signal, rather than one coming directly from the control unit. Thus, we drop

the signal name in subsequent figures.

19 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.18 The setting of the control lines is completely determined by the opcode fields of the instruction.

The first row of the table corresponds to the R-format instructions (add, sub, AND, OR, and slt). For all these

instructions, the source register fields are rs and rt, and the destination register field is rd; this defines how the

signals ALUSrc and RegDst are set. Furthermore, an R-type instruction writes a register (Reg-Write = 1), but

neither reads nor writes data memory. When the Branch control signal is 0, the PC is unconditionally replaced

with PC + 4; otherwise, the PC is replaced by the branch target if the Zero output of the ALU is also high. The

ALUOp field for R-type instructions is set to 10 to indicate that the ALU control should be generated from the

funct field. The second and third rows of this table give the control signal settings for lw and sw. These ALUSrc

and ALUOp fields are set to perform the address calculation. The MemRead and MemWrite are set to perform

the memory access. Finally, RegDst and RegWrite are set for a load to cause the result to be stored into the rt

register. The branch instruction is similar to an R-format operation, since it sends the rs and rt registers to the

ALU. The ALUOp field for branch is set for a subtract (ALU control = 01), which is used to test for equality. Notice

that the MemtoReg field is irrelevant when the RegWrite signal is 0: since the register is not being written, the

value of the data on the register data write port is not used. Thus, the entry MemtoReg in the last two rows of the

table is replaced with X for don’t care. Don’t cares can also be added to RegDst when RegWrite is 0. This type of

don’t care must be added by the designer, since it depends on knowledge of how the datapath works.

20 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.19 The datapath in operation for an R-type instruction, such as add $t1,$t2,$t3. The control lines,

datapath units, and connections that are active are highlighted.

21 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.20 The datapath in operation for a load instruction. The control lines, datapath units, and

connections that are active are highlighted. A store instruction would operate very similarly. The main difference

would be that the memory control would indicate a write rather than a read, the second register value read would

be used for the data to store, and the operation of writing the data memory value to the register file would not

occur.

22 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.21 The datapath in operation for a branch-on-equal instruction. The control lines, datapath units,

and connections that are active are highlighted. After using the register file and ALU to perform the compare, the

Zero output is used to select the next program counter from between the two candidates.

23 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.22 The control function for the simple single-cycle implementation is completely specified by this

truth table. The top half of the table gives the combinations of input signals that correspond to the four opcodes,

one per column, that determine the control output settings. (Remember that Op [5:0] corresponds to bits 31:26 of

the instruction, which is the op field.) The bottom portion of the table gives the outputs for each of the four

opcodes. Thus, the output RegWrite is asserted for two different combinations of the inputs. If we consider only

the four opcodes shown in this table, then we can simplify the truth table by using don’t cares in the input portion.

For example, we can detect an R-format instruction with the expression Op5 ? Op2 , since this is sufficient to

distinguish the R-format instructions from lw, sw, and beq. We do not take advantage of this simplification, since

the rest of the MIPS opcodes are used in a full implementation.

24 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.23 Instruction format for the jump instruction (opcode = 2). The destination address for a jump

instruction is formed by concatenating the upper 4 bits of the current PC + 4 to the 26-bit address field in the

jump instruction and adding 00 as the 2 low-order bits.

25 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.24 The simple control and datapath are extended to handle the jump instruction. An additional

multiplexor (at the upper right) is used to choose between the jump target and either the branch target or the

sequential instruction following this one. This multiplexor is controlled by the jump control signal. The jump target

address is obtained by shifting the lower 26 bits of the jump instruction left 2 bits, effectively adding 00 as the

low-order bits, and then concatenating the upper 4 bits of PC + 4 as the high-order bits, thus yielding a 32-bit

address.

26 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.25 The laundry analogy for pipelining. Ann, Brian, Cathy, and Don each have dirty clothes to be

washed, dried, folded, and put away. The washer, dryer, “folder,” and “storer” each take 30 minutes for their task.

Sequential laundry takes 8 hours for 4 loads of wash, while pipelined laundry takes just 3.5 hours. We show the

pipeline stage of different loads over time by showing copies of the four resources on this two-dimensional time

line, but we really have just one of each resource.

27 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.26 Total time for each instruction calculated from the time for each component. This calculation

assumes that the multiplexors, control unit, PC accesses, and sign extension unit have no delay.

28 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.27 Single-cycle, nonpipelined execution in top versus pipelined execution in bottom. Both use the

same hardware components, whose time is listed in Figure 4.26. In this case, we see a fourfold speed-up on

average time between instructions, from 800 ps down to 200 ps. Compare this figure to Figure 4.25. For the

laundry, we assumed all stages were equal. If the dryer were slowest, then the dryer stage would set the stage

time. The pipeline stage times of a computer are also limited by the slowest resource, either the ALU operation

or the memory access. We assume the write to the register file occurs in the first half of the clock cycle and the

read from the register file occurs in the second half. We use this assumption throughout this chapter.

29 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.28 Graphical representation of the instruction pipeline, similar in spirit to the laundry pipeline in

Figure 4.25. Here we use symbols representing the physical resources with the abbreviations for pipeline stages

used throughout the chapter. The symbols for the five stages: IF for the instruction fetch stage, with the box

representing instruction memory; ID for the instruction decode/register file read stage, with the drawing showing

the register file being read; EX for the execution stage, with the drawing representing the ALU; MEM for the

memory access stage, with the box representing data memory; and WB for the write-back stage, with the

drawing showing the register file being written. The shading indicates the element is used by the instruction.

Hence, MEM has a white background because add does not access the data memory. Shading on the right half

of the register file or memory means the element is read in that stage, and shading of the left half means it is

written in that stage. Hence the right half of ID is shaded in the second stage because the register file is read,

and the left half of WB is shaded in the fifth stage because the register file is written.

30 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.29 Graphical representation of forwarding. The connection shows the forwarding path from the

output of the EX stage of add to the input of the EX stage for sub, replacing the value from register $s0 read in

the second stage of sub.

31 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.30 We need a stall even with forwarding when an R-format instruction following a load tries to use

the data. Without the stall, the path from memory access stage output to execution stage input would be going

backward in time, which is impossible. This figure is actually a simplification, since we cannot know until after the

subtract instruction is fetched and decoded whether or not a stall will be necessary. Section 4.7 shows the details

of what really happens in the case of a hazard.

32 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.31 Pipeline showing stalling on every conditional branch as solution to control hazards. This

example assumes the conditional branch is taken, and the instruction at the destination of the branch is the OR

instruction. There is a one-stage pipeline stall, or bubble, after the branch. In reality, the process of creating a

stall is slightly more complicated, as we will see in Section 4.8. The effect on performance, however, is the same

as would occur if a bubble were inserted.

33 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.32 Predicting that branches are not taken as a solution to control hazard. The top drawing shows

the pipeline when the branch is not taken. The bottom drawing shows the pipeline when the branch is taken. As

we noted in Figure 4.31, the insertion of a bubble in this fashion simplifies what actually happens, at least during

the first clock cycle immediately following the branch. Section 4.8 will reveal the details.

34 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.33 The single-cycle datapath from Section 4.4 (similar to Figure 4.17). Each step of the instruction

can be mapped onto the datapath from left to right. The only exceptions are the update of the PC and the write-

back step, shown in color, which sends either the ALU result or the data from memory to the left to be written into

the register file. (Normally we use color lines for control, but these are data lines.)

35 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.34 Instructions being executed using the single-cycle datapath in Figure 4.33, assuming pipelined

execution. Similar to Figures 4.28 through 4.30, this figure pretends that each instruction has its own datapath,

and shades each portion according to use. Unlike those figures, each stage is labeled by the physical resource

used in that stage, corresponding to the portions of the datapath in Figure 4.33. IM represents the instruction

memory and the PC in the instruction fetch stage, Reg stands for the register file and sign extender in the

instruction decode/register file read stage (ID), and so on. To maintain proper time order, this stylized datapath

breaks the register file into two logical parts: registers read during register fetch (ID) and registers written during

write back (WB). This dual use is represented by drawing the unshaded left half of the register file using dashed

lines in the ID stage, when it is not being written, and the unshaded right half in dashed lines in the WB stage,

when it is not being read. As before, we assume the register file is written in the first half of the clock cycle and

the register file is read during the second half.

36 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.35 The pipelined version of the datapath in Figure 4.33. The pipeline registers, in color, separate

each pipeline stage. They are labeled by the stages that they separate; for example, the first is labeled IF/ID

because it separates the instruction fetch and instruction decode stages. The registers must be wide enough to

store all the data corresponding to the lines that go through them. For example, the IF/ID register must be 64 bits

wide, because it must hold both the 32-bit instruction fetched from memory and the incremented 32-bit PC

address. We will expand these registers over the course of this chapter, but for now the other three pipeline

registers contain 128, 97, and 64 bits, respectively.

37 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.36 IF and ID: FIRST AND SECOND PIPE STAGES OF AN INSTRUCTION, WITH THE ACTIVE

PORTIONS OF THE DATAPATH IN FIGURE 4.35 HIGHLIGHTED. The highlighting convention is the same as

that used in Figure 4.28. As in Section 4.2, there is no confusion when reading and writing registers, because the

contents change only on the clock edge. Although the load needs only the top register in stage 2, the processor

doesn’t know what instruction is being decoded, so it sign-extends the 16-bit constant and reads both registers

into the ID/EX pipeline register. We don’t need all three operands, but it simplifies control to keep all three.

38 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.37 EX: The third pipe stage of a load instruction, highlighting the portions of the datapath in Figure

4.35 used in this pipe stage. The register is added to the sign-extended immediate, and the sum is placed in the

EX/MEM pipeline register.

39 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.38 MEM and WB: The fourth and fifth pipe stages of a load instruction, highlighting the portions of

the datapath in Figure 4.35 used in this pipe stage. Data memory is read using the address in the EX/MEM

pipeline registers, and the data is placed in the MEM/WB pipeline register. Next, data is read from the MEM/WB

pipeline register and written into the register file in the middle of the datapath. Note: there is a bug in this design

that is repaired in Figure 4.41.

40 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.39 EX: The third pipe stage of a store instruction. Unlike the third stage of the load instruction in

Figure 4.37, the second register value is loaded into the EX/MEM pipeline register to be used in the next stage.

Although it wouldn’t hurt to always write this second register into the EX/MEM pipeline register, we write the

second register only on a store instruction to make the pipeline easier to understand.

41 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.40 MEM and WB: The fourth and fifth pipe stages of a store instruction. In the fourth stage, the data

is written into data memory for the store. Note that the data comes from the EX/MEM pipeline register and that

nothing is changed in the MEM/WB pipeline register. Once the data is written in memory, there is nothing left for

the store instruction to do, so nothing happens in stage 5.

42 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.41 The corrected pipelined datapath to handle the load instruction properly. The write register

number now comes from the MEM/WB pipeline register along with the data. The register number is passed from

the ID pipe stage until it reaches the MEM/WB pipeline register, adding five more bits to the last three pipeline

registers. This new path is shown in color.

43 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.42 The portion of the datapath in Figure 4.41 that is used in all five stages of a load instruction.

44 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.43 Multiple-clock-cycle pipeline diagram of five instructions. This style of pipeline representation

shows the complete execution of instructions in a single figure. Instructions are listed in instruction execution

order from top to bottom, and clock cycles move from left to right. Unlike Figure 4.28, here we show the pipeline

registers between each stage. Figure 4.44 shows the traditional way to draw this diagram.

45 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.44 Traditional multiple-clock-cycle pipeline diagram of five instructions in Figure 4.43.

46 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.45 The single-clock-cycle diagram corresponding to clock cycle 5 of the pipeline in Figures 4.43 and

4.44. As you can see, a single-clock-cycle figure is a vertical slice through a multiple-clock-cycle diagram.

47 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.46 The pipelined datapath of Figure 4.41 with the control signals identified. This datapath borrows

the control logic for PC source, register destination number, and ALU control from Section 4.4. Note that we now

need the 6-bit funct field (function code) of the instruction in the EX stage as input to ALU control, so these bits

must also be included in the ID/EX pipeline register. Recall that these 6 bits are also the 6 least significant bits of

the immediate field in the instruction, so the ID/EX pipeline register can supply them from the immediate field

since sign extension leaves these bits unchanged.

48 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.47 A copy of Figure 4.12. This figure shows how the ALU control bits are set depending on the

ALUOp control bits and the different function codes for the R-type instruction.

49 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.48 A copy of Figure 4.16. The function of each of seven control signals is defined. The ALU control

lines (ALUOp) are defined in the second column of Figure 4.47. When a 1-bit control to a 2-way multiplexor is

asserted, the multiplexor selects the input corresponding to 1. Otherwise, if the control is deasserted, the

multiplexor selects the 0 input. Note that PCSrc is controlled by an AND gate in Figure 4.46. If the Branch signal

and the ALU Zero signal are both set, then PCSrc is 1; otherwise, it is 0. Control sets the Branch signal only

during a beq instruction; otherwise, PCSrc is set to 0.

50 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.49 The values of the control lines are the same as in Figure 4.18, but they have been shuffled into

three groups corresponding to the last three pipeline stages.

51 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.50 The control lines for the final three stages. Note that four of the nine control lines are used in the

EX phase, with the remaining five control lines passed on to the EX/MEM pipeline register extended to hold the

control lines; three are used during the MEM stage, and the last two are passed to MEM/WB for use in the WB

stage.

52 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.51 The pipelined datapath of Figure 4.46, with the control signals connected to the control portions

of the pipeline registers. The control values for the last three stages are created during the instruction decode

stage and then placed in the ID/EX pipeline register. The control lines for each pipe stage are used, and

remaining control lines are then passed to the next pipeline stage.

53 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.52 Pipelined dependences in a five-instruction sequence using simplified datapaths to show the

dependences. All the dependent actions are shown in color, and “CC 1” at the top of the figure means clock cycle

1. The first instruction writes into $2, and all the following instructions read $2. This register is written in clock

cycle 5, so the proper value is unavailable before clock cycle 5. (A read of a register during a clock cycle returns

the value written at the end of the first half of the cycle, when such a write occurs.) The colored lines from the top

datapath to the lower ones show the dependences. Those that must go backward in time are pipeline data

hazards.

54 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.53 The dependences between the pipeline registers move forward in time, so it is possible to supply

the inputs to the ALU needed by the AND instruction and OR instruction by forwarding the results found in the

pipeline registers. The values in the pipeline registers show that the desired value is available before it is written

into the register file. We assume that the register file forwards values that are read and written during the same

clock cycle, so the add does not stall, but the values come from the register file instead of a pipeline register.

Register file “forwarding”—that is, the read gets the value of the write in that clock cycle—is why clock cycle 5

shows register $2 having the value 10 at the beginning and −20 at the end of the clock cycle. As in the rest of

this section, we handle all forwarding except for the value to be stored by a store instruction.

55 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.54 On the top are the ALU and pipeline registers before adding forwarding. On the bottom, the

multiplexors have been expanded to add the forwarding paths, and we show the forwarding unit. The new

hardware is shown in color. This figure is a stylized drawing, however, leaving out details from the full datapath

such as the sign extension hardware. Note that the ID/EX.RegisterRt field is shown twice, once to connect to the

Mux and once to the forwarding unit, but it is a single signal. As in the earlier discussion, this ignores forwarding

of a store value to a store instruction. Also note that this mechanism works for slt instructions as well.

56 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.55 The control values for the forwarding multiplexors in Figure 4.54. The signed immediate that is

another input to the ALU is described in the Elaboration at the end of this section.

57 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.56 The datapath modified to resolve hazards via forwarding. Compared with the datapath in Figure

4.51, the additions are the multiplexors to the inputs to the ALU. This figure is a more stylized drawing, however,

leaving out details from the full datapath, such as the branch hardware and the sign extension hardware.

58 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.57 A close-up of the datapath in Figure 4.54 shows a 2:1 multiplexor, which has been added to

select the signed immediate as an ALU input.

59 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.58 A pipelined sequence of instructions. Since the dependence between the load and the following

instruction (and) goes backward in time, this hazard cannot be solved by forwarding. Hence, this combination

must result in a stall by the hazard detection unit.

60 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.59 The way stalls are really inserted into the pipeline. A bubble is inserted beginning in clock cycle

4, by changing the and instruction to a nop. Note that the and instruction is really fetched and decoded in clock

cycles 2 and 3, but its EX stage is delayed until clock cycle 5 (versus the unstalled position in clock cycle 4).

Likewise the OR instruction is fetched in clock cycle 3, but its ID stage is delayed until clock cycle 5 (versus the

unstalled clock cycle 4 position). After insertion of the bubble, all the dependences go forward in time and no

further hazards occur.

61 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.60 Pipelined control overview, showing the two multiplexors for forwarding, the hazard detection

unit, and the forwarding unit. Although the ID and EX stages have been simplified—the sign-extended immediate

and branch logic are missing—this drawing gives the essence of the forwarding hardware requirements.

62 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.61 The impact of the pipeline on the branch instruction. The numbers to the left of the instruction

(40, 44, …) are the addresses of the instructions. Since the branch instruction decides whether to branch in the

MEM stage—clock cycle 4 for the beq instruction above—the three sequential instructions that follow the branch

will be fetched and begin execution. Without intervention, those three following instructions will begin execution

before beq branches to lw at location 72. (Figure 4.31 assumed extra hardware to reduce the control hazard to

one clock cycle; this figure uses the nonoptimized datapath.)

63 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.62 The ID stage of clock cycle 3 determines that a branch must be taken, so it selects 72 as the

next PC address and zeros the instruction fetched for the next clock cycle. Clock cycle 4 shows the instruction at

location 72 being fetched and the single bubble or nop instruction in the pipeline as a result of the taken branch.

(Since the nop is really sll $0, $0, 0, it’s arguable whether or not the ID stage in clock 4 should be highlighted.)

64 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.63 The states in a 2-bit prediction scheme. By using 2 bits rather than 1, a branch that strongly

favors taken or not taken—as many branches do—will be mispredicted only once. The 2 bits are used to encode

the four states in the system. The 2-bit scheme is a general instance of a counter-based predictor, which is

incremented when the prediction is accurate and decremented otherwise, and uses the mid-point of its range as

the division between taken and not taken.

65 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.64 Scheduling the branch delay slot. The top box in each pair shows the code before scheduling;

the bottom box shows the scheduled code. In (a), the delay slot is scheduled with an independent instruction

from before the branch. This is the best choice. Strategies (b) and (c) are used when (a) is not possible. In the

code sequences for (b) and (c), the use of $s1 in the branch condition prevents the add instruction (whose

destination is $s1) from being moved into the branch delay slot. In (b) the branch delay slot is scheduled from the

target of the branch; usually the target instruction will need to be copied because it can be reached by another

path. Strategy (b) is preferred when the branch is taken with high probability, such as a loop branch. Finally, the

branch may be scheduled from the not-taken fall-through as in (c). To make this optimization legal for (b) or (c), it

must be OK to execute the sub instruction when the branch goes in the unexpected direction. By “OK” we mean

that the work is wasted, but the program will still execute correctly. This is the case, for example, if $t4 were an

unused temporary register when the branch goes in the unexpected direction.

66 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.65 The final datapath and control for this chapter. Note that this is a stylized figure rather than a

detailed datapath, so it’s missing the ALUsrc Mux from Figure 4.57 and the multiplexor controls from Figure 4.51.

67 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.66 The datapath with controls to handle exceptions. The key additions include a new input with the

value 8000 0180hex in the multiplexor that supplies the new PC value; a Cause register to record the cause of the

exception; and an Exception PC register to save the address of the instruction that caused the exception. The

8000 0180hex input to the multiplexor is the initial address to begin fetching instructions in the event of an

exception. Although not shown, the ALU overflow signal is an input to the control unit.

68 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.67 The result of an exception due to arithmetic overflow in the add instruction. The overflow is

detected during the EX stage of clock 6, saving the address following the add in the EPC register (4C + 4 =

50hex). Overflow causes all the Flush signals to be set near the end of this clock cycle, deasserting control values

(setting them to 0) for the add. Clock cycle 7 shows the instructions converted to bubbles in the pipeline plus the

fetching of the first instruction of the exception routine—sw $25,1000($0)—from instruction location 8000

0180hex. Note that the AND and OR instructions, which are prior to the add, still complete. Although not shown,

the ALU overflow signal is an input to the control unit.

69 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.68 Static two-issue pipeline in operation. The ALU and data transfer instructions are issued at the

same time. Here we have assumed the same five-stage structure as used for the single-issue pipeline. Although

this is not strictly necessary, it does have some advantages. In particular, keeping the register writes at the end

of the pipeline simplifies the handling of exceptions and the maintenance of a precise exception model, which

become more difficult in multiple-issue processors.

70 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.69 A static two-issue datapath. The additions needed for double issue are highlighted: another 32

bits from instruction memory, two more read ports and one more write port on the register file, and another ALU.

Assume the bottom ALU handles address calculations for data transfers and the top ALU handles everything

else.

71 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.70 The scheduled code as it would look on a two-issue MIPS pipeline. The empty slots are no-ops.

72 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.71 The unrolled and scheduled code of Figure 4.70 as it would look on a static two-issue MIPS

pipeline. The empty slots are no-ops. Since the first instruction in the loop decrements $s1 by 16, the addresses

loaded are the original value of $s1, then that address minus 4, minus 8, and minus 12.

73 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.72 The three primary units of a dynamically scheduled pipeline. The final step of updating the state

is also called retirement or graduation.

74 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.73 Record of Intel Microprocessors in terms of pipeline complexity, number of cores, and power.

The Pentium 4 pipeline stages do not include the commit stages. If we included them, the Pentium 4 pipelines

would be even deeper.

75 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.74 Specification of the ARM Cortex-A8 and the Intel Core i7 920.

76 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.75 The A8 pipeline. The first three stages fetch instructions into a 12-entry instruction fetch buffer.

The Address Generation Unit (AGU) uses a Branch Target Buffer (BTB), Global History Buffer (GHB), and a

Return Stack (RS) to predict branches to try to keep the fetch queue full. Instruction decode is five stages and

instruction execution is six stages.

77 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.76 CPI on ARM Cortex A8 for the Minnespec benchmarks, which are small versions of the

SPEC2000 benchmarks. These benchmarks use the much smaller inputs to reduce running time by several

orders of magnitude. The smaller size significantly underestimates the CPI impact of the memory hierarchy (See

Chapter 5).

78 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.77 The Core i7 pipeline with memory components. The total pipeline depth is 14 stages, with branch

mispredictions costing 17 clock cycles. This design can buffer 48 loads and 32 stores. The six independent units

can begin execution of a ready RISC operation each clock cycle.

79 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.78 CPI of Intel Core i7 920 running SPEC2006 integer benchmarks.

80 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.79 Percentage of branch mispredictions and wasted work due to unfruitful speculation of Intel Core

i7 920 running SPEC2006 integer benchmarks.

81 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.80 Optimized C version of DGEMM using C intrinsics to generate the AVX subword-parallel

instructions for the x86 (Figure 3.23) and loop unrolling to create more opportunities for instruction-level

parallelism. Figure 4.81 shows the assembly language produced by the compiler for the inner loop, which unrolls

the three for-loop bodies to expose instruction level parallelism.

82 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.81 The x86 assembly language for the body of the nested loops generated by compiling the unrolled

C code in Figure 4.80.

83 Copyright © 2014 Elsevier Inc. All rights reserved.

FIGURE 4.82 Performance of three versions of DGEMM for 32x32 matrices. Subword parallelism and

instruction level parallelism has led to speedup of almost a factor of 9 over the unoptimized code in Figure 3.21.

84 Copyright © 2014 Elsevier Inc. All rights reserved.

Unn Fig. 1

85 Copyright © 2014 Elsevier Inc. All rights reserved.

Unn Fig. 2

86 Copyright © 2014 Elsevier Inc. All rights reserved.

Unn Fig. 3

87 Copyright © 2014 Elsevier Inc. All rights reserved.

Unn Fig. 4

88 Copyright © 2014 Elsevier Inc. All rights reserved.

Unn Fig. 5

89 Copyright © 2014 Elsevier Inc. All rights reserved.

Table 1

90 Copyright © 2014 Elsevier Inc. All rights reserved.

Table 2

91 Copyright © 2014 Elsevier Inc. All rights reserved.

Table 3

92 Copyright © 2014 Elsevier Inc. All rights reserved.

Table 4

93 Copyright © 2014 Elsevier Inc. All rights reserved.

Table 5

94 Copyright © 2014 Elsevier Inc. All rights reserved.

Table 6

95 Copyright © 2014 Elsevier Inc. All rights reserved.

Table 7

96 Copyright © 2014 Elsevier Inc. All rights reserved.

Table 8

97 Copyright © 2014 Elsevier Inc. All rights reserved.

Table 9

98 Copyright © 2014 Elsevier Inc. All rights reserved.

Table 10

99 Copyright © 2014 Elsevier Inc. All rights reserved.

Table 11

100 Copyright © 2014 Elsevier Inc. All rights reserved.

Table 12

101 Copyright © 2014 Elsevier Inc. All rights reserved.

Table 13

102 Copyright © 2014 Elsevier Inc. All rights reserved.

Table 14

103 Copyright © 2014 Elsevier Inc. All rights reserved.

Table 15

104 Copyright © 2014 Elsevier Inc. All rights reserved.

Table 16

105 Copyright © 2014 Elsevier Inc. All rights reserved.

Table 17

106 Copyright © 2014 Elsevier Inc. All rights reserved.

Table 18

107 Copyright © 2014 Elsevier Inc. All rights reserved.

Table 19

108 Copyright © 2014 Elsevier Inc. All rights reserved.

Table 20

109 Copyright © 2014 Elsevier Inc. All rights reserved.

Table 21

