
COMP 218 Data Structures Fall 2024

Assignment DS5

Due Date: November 10

Purpose

You will use the stack abstract data type (ADT) to solve a problem you’re quite familiar with.

Problem

In DS4, you solved the problem of finding paths through a cave. While the USGS is happy with
your solution, it turns out that the autonomous vehicles can be programmed only with a low-level
assembly language. Such a language has no recursive capabilities. Thus, you now have to rewrite
your previous solution in a non-recursive fashion. This means that you will now need to keep track
of the position of the vehicle using a stack rather than letting recursion store that information.
Once you write this solution in C++, the agency will translate your code to assembly that can
then run on the vehicle.

Input

The input is exactly as it was for the previous problem. Your program should prompt the user for
a file name. The program should then read the plain text file, the first line of which contains two
integers representing R and C, where the maximum number of rows R or columns C is 50. Note
that it is possible R 6= C. What follows is a grid of size R×C containing characters. A ‘ ’ at a grid
location means there is an open path; an ‘X’ at a grid location means that there is a blockage. The
edges surrounding the grid are assumed to be blocked, as well. The path will always be at most
one space wide. Paths that diverge will never come back together. The starting point will always
be at location (0, 0) in the upper left corner.
For example, a 10× 10 grid might look like the “Initial Grid” shown below left:

Initial Grid All Paths Direct Path

_XXXXXXXXX 0 0

_____XXX_X 00000 0 00000

X_XX_XXX_X 0 0 0 0

X_XX_XXX_X 0 0 0 0

__XX_____X 00 00000 00

_XXXX_XXXX 0 0 0

_XXXX_XXXX 0 0 0

XXXXX__XXX 00 00

XXXXXX____ 0000 0000

XXXXXXXXX_ 0 0

A sample input file is available on the course web page.

Output

As before, the vehicle should search the entire grid from the upper left corner to the lower right
corner by following all open pathways. The output should be the initial grid, followed by the grid
showing the entire search path(s) the vehicle took to go from the upper left corner to the lower
right. Next, the direct path from the start to the end should be displayed. For the latter two
displays, only the path should be shown (not the entire grid). For example (using the input above),
the figure above shows the complete search path (“All Paths”) and the path that goes directly



COMP 218 Data Structures Fall 2024

from the start to the finish (“Direct Path”). These become the maps the USGS will use for further
processing. Note: The grid/paths should not be displayed side-by-side; the output shown above is
for space efficiency only! Finally, a new added feature is that the number of dead ends will be
displayed. In the above example, the number of dead ends would be two.

Note that the vehicle must follow a path! There can be places in the cave where there are paths
that can not be reached from the starting location! You can not just search for blank locations;
you must actually follow a path.

Specifics

• You must create a class called “cave.” All of the methods and data relating to your application
program must belong to this class (not the stack implementation! – see below).

• The constructor should read the file and initialize the cave.

• Your class should contain the following public methods:

displayCave() – display the original cave
searchPath() – simulate the vehicle searching through the cave
displayPaths() – display all the paths through the cave
displayDirect() – display the direct path (only!) through the cave
deadEnds() – return the number of dead end paths in the cave

Any additional methods should be private.

• There should be no use of recursion in this project. This is either good news or bad news,
depending on your view of the situation...

• You will need a stack to keep track of where the vehicle has been. It should be implemented
as a template class so that it can store any type of data. The implementation should be
accomplished with an array; the maximum size you can infer from the maximum size of the
legal grids that will be input. Furthermore, it should be written in its own stack.h and
stack.cpp files separate from your search implementation. The ADT functions the stack
should support should be:

– the stack class should be called stack

– a constructor that initializes an empty stack

– push(x), where x is any type of data that is pushed onto the top of the stack

– top(), which returns the top item of the stack

– pop(), which removes the top item of the stack

– isEmpty(), which returns true if the stack is empty

– isFull(), which returns true if the stack is full

• Your program should promote code reuse. That is, identical or very similar code should not
be repeated from one function/method to another. Take advantage of OOP’s capabilities and
features.



COMP 218 Data Structures Fall 2024

• Your main() should be a test program almost identical to the previous project:

int main () {

cave theCave;

cout << "Initial grid: " << endl;

theCave.displayCave();

theCave.searchPath();

cout << "Path(s) found: " << endl;

theCave.displayPaths();

cout << "Direct Path found: " << endl;

theCave.displayDirect();

cout << "Number of dead ends: " << theCave.deadEnds() << endl;

return 0;

}

Note that none of the public methods may have any parameters.

Notes

You do not need dynamic allocation of any arrays. Just set a global constant to the maximums
(see above) and create that size array.

Submit your source code the usual way, using the usual naming conventions. Turn in hard copy of
your code at the beginning of class on November 11th.

The answer is either m or something else.
– Eva Ma, one of my grad school professors


