Mathematical Preliminaries

1 Sets

- A set is an unordered collection of distinct objects (elements). These elements may be anything, including other sets.

- Special sets include:
 - \(N \) - set of natural numbers (integers beginning with 0).
 - \(R \) or \(\mathbb{R} \) - set of real numbers.
 - \(\{\} \) - null or empty set.

- The elements of a set may be specified in a number of ways, the simplest being:
 \[V = \{a, e, u, o, i\} \]

 The notation \(a \in V \) means “\(a \) is an element of \(V \).”

 Another way to specify a set is to describe the elements logically in “set-builder notation”:
 \[S = \{x | x \in \mathbb{R} \text{ and } 0 \leq x \leq 1\} \]

 is the set of all real numbers in the interval from 0 to 1 inclusive.

- \(S \) is a subset of \(T \) if and only if (iff) each element of \(S \) is also an element of \(T \), and is denoted by \(S \subseteq T \).

- The power set of \(S \), denoted by \(P(S) \), is the collection of all subsets of \(S \).

- The cardinality of a set \(S \), denoted by \(|S| \), is the number of distinct elements of \(S \).

- New sets may be formed from existing sets \(S \) and \(T \):
 - union: \(S \cup T \).
 - intersection: \(S \cap T \).
 - difference: \(S - T \).
 - complement: \(\overline{S} \).

- Two sets, \(A \) and \(B \), are disjoint if \(A \cap B = \{\} \).
2 Functions

- A function \(f \) is a mapping from one set, \(A \), called the domain, to another set \(B \), called the co-domain, that associates each element of \(A \) with a single element of \(B \):

 If \(a \in A \) and \(f \) maps \(a \) to \(b \), we write \(f(a) = b \).

- The range of \(f \) is the set containing all \(b \in B \) such that \(f(a) = b \) for some \(a \in A \).

- Special functions of interest:

 - Floor: \(f(x) = \lfloor x \rfloor \). This is the largest integer less than or equal to \(x \).
 - Ceiling: \(f(x) = \lceil x \rceil \). This is the smallest integer greater than or equal to \(x \).
 - Factorial: \(f(n) = n! \). Note that the domain of this function is the natural numbers.

- Exponentiation (base \(b \)): \(f(x) = b^x \). Rules for manipulation:

 \[
 b^x b^y = b^{x+y} \tag{1}
 \]
 \[
 \frac{b^x}{b^y} = b^{x-y} \tag{2}
 \]
 \[
 (b^x)^y = b^{x y} \neq b^{(x^y)} \tag{3}
 \]

- Logarithm \((b > 0)\): \(f(x) = \log_b x \). This means \(y = \log_b x \) if \(b^y = x \). If \(b \) is unspecified, 2 is assumed.

 - Some common notation:

 \[
 \lg n = \log_2 n \tag{4}
 \]
 \[
 \lg n^2 = \log_2 n^2 = \log_2(n^2) \tag{5}
 \]
 \[
 \lg^2 n = \log_2^2 n = (\log_2 n)^2 \tag{6}
 \]

 - Rules for manipulation:

 \[
 \log_b 1 = 0 \tag{7}
 \]
 \[
 \log_b b = 1 \tag{8}
 \]
 \[
 \log_a x = \frac{\log_b x}{\log_b a} \text{ where } b > 0 \tag{9}
 \]
 \[
 \log x y = \log x + \log y \tag{10}
 \]
 \[
 \log x^y = y \log x \neq (\log x)^y \tag{11}
 \]
 \[
 \log x < x \text{ for all } x > 0 \tag{12}
 \]
 \[
 \frac{d}{dx} \log_b x = \frac{1}{x \ln b} \tag{13}
 \]
3 Summations

- A summation is a short-hand notation to describe the addition of the terms of a sequence:

\[\sum_{i=m}^{n} f(i) = f(m) + f(m+1) + f(m+2) + \ldots + f(n) \]

The variable \(i \) is called the index variable. Usually \(m = 0 \) or \(m = 1 \).

- Special summation formulas:

\[\sum_{i=0}^{n} 2^i = 2^{n+1} - 1 \] \hspace{1cm} (14)
\[\sum_{i=0}^{n} a^i = \frac{a^{n+1} - 1}{a - 1} \quad \text{where} \ a \neq 1 \] \hspace{1cm} (15)
\[\sum_{i=0}^{n} i = \frac{n(n+1)}{2} \] \hspace{1cm} (16)
\[\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \] \hspace{1cm} (17)
\[\sum_{i=1}^{n} \frac{1}{i} \approx \log_e n \] \hspace{1cm} (18)

- Some rules for manipulating summations, where \(c \) is a constant:

\[\sum_{i=1}^{n} ca_i = c \sum_{i=1}^{n} a_i \] \hspace{1cm} (19)
\[\sum_{i=m}^{n} (a_i \pm b_i) = \sum_{i=m}^{n} a_i \pm \sum_{i=m}^{n} b_i \] \hspace{1cm} (20)
\[\sum_{i=m}^{n} c = c(n - m + 1) \] \hspace{1cm} (21)
\[\sum_{i=m}^{n} a_i = \sum_{i=0}^{m-1} a_i - \sum_{i=0}^{n-m} a_i \] \hspace{1cm} (22)
\[\sum_{i=m}^{n} a_i = \sum_{j=0}^{n-m} a(j + m) \] \hspace{1cm} (23)